簡易檢索 / 詳目顯示

研究生: 李伶如
Li, Ling-Ru
論文名稱: 調變可溶性有機薄膜之微晶體位相及摻雜電子受體來提升有機薄膜電晶體效能
Improving Organic Thin-Film Transistor Performance by Controlling the Orientation of Solution-Processible Microcrystallites and Doping with Electron Acceptor.
指導教授: 楊耀文
Yang, Yaw-Wen
口試委員: 陳銘洲
季昀
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 134
中文關鍵詞: 有機薄膜場效電晶體退火處理
外文關鍵詞: OTFTs, diF-TESADT, F4-TCNQ, post annealing
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要著重於製作高效能的有機薄膜場效電晶體(OTFTs),可溶性有機半導體薄膜分別藉由退火與摻雜處理,並探討其結晶性質與各介面對有機薄膜場效電晶體效能的影響,期待能製作高效能元件。挑選的可溶性p型有機半導體分子為2,8-difluoro-5,11-bis- (triethylsilylethynyl) anthradithiophene (diF-TESADT),實驗分成二個部分:
    第一部分著重於利用退火處理(post annealing)改善有機薄膜結晶性質。不同退火條件處理的薄膜分別藉由原子力顯微鏡(Atomic Force Microscope,AFM)、X光繞射(X-Ray Diffraction,XRD)、掠角入射X光繞射(Grazing Incidence X-Ray Diffraction)、與近緣X光吸收細微結構(Near-Edge X-Ray Absorption Fine Structure,NEXAFS)觀察其表面形貌、結構、結晶性變化。旋轉塗佈完成後的薄膜的形貌呈現稻穗狀分佈。掠角入射X光繞射清楚顯示此薄膜是由二種不同傾角的晶粒所構成。一是以(001)面法線齊一的排列,另一種是以(111)面法線齊一的排列。此混和排列的薄膜所製作的電晶體其載子遷移率不高,約在10-3 cm2V-1s-1左右,最高為0.37 cm2V-1s-1。經溶劑蒸氣再結晶輔以加熱退火處理後的diF-TESADT薄膜的成長形貌由原本稻穗狀變成大片連續層狀結構,薄膜平面方向進行大規模結構重整,從(111)轉變成適於晶體延展與有利載子跳度的(001)面齊一法線的排列形式。同時也提升了沿著法線方向的結晶性。因而使元件載子遷移率□平均值提升至1.39 cm2V-1s-1,最高至2.7 cm2V-1s-1。
    第二部分則利用具有拉電子特性的有機分子2,3,5,6-tetrafluoro-7,7,8,8-tetra cyanoquinodimethane (F4-TCNQ)作為摻雜物(dopant),藉以改善以diF-TESADT為主的有機薄膜場效電晶體之介面偶極效應,進而優化電性表現。藉由紫外光光電子能譜(Ultraviolet Photoemission Spectroscopy,UPS)、X光光電子能譜(X-Ray Photoemission Spectroscopy,XPS)、NEXAFS、AFM討論能階變化、形貌、電性表現的關係。以F4-TCNQ摻雜的diF-TESADT薄膜作為有效傳輸層(active layer)製作成有機薄膜場效電晶體(OTFTs),特定的摻雜比例可大幅降低臨界電壓(threshold voltage,VTH),推測F4-TCNQ的拉電子特性對有機場效電晶體的介面偶極有中和的效果,使VTH由21.3 V降至1.47 V;但過量的F4-TCNQ則會扮演雜質,阻礙晶體的延展。


    In the thesis, we detail the progress made in improving the thin films of 2,8-difluoro-5,11-bis (triethylsilylethynyl) anthradithiophene (diF-TESADT) for high mobility OFET application.
    In part (I) experiment, different post-annealing methods were used to improve the organic thin film structure. Morphology, structure, and crystallinity of diF-TESADT films are of particular concern and investigated by combined techniques of atomic force microscopy (AFM), grazing-incidence x-ray diffraction (GIXD), and near-edge x-ray absorption fine structure (NEXAFS) spectroscopy. The diF-TESADT films produced from spin-coating exhibit wheat-like features and GIXD data reveal the presence of both (001)- and (111)-oriented crystallites on the surface. Despite the mixed orientation, as-grown diF-TESADT can still produce OFET with a best mobility of 0.37 cm2V-1 s-1. Improvement in film quality is achieved by employing solvent annealing followed by thermal annealing. The resultant diF-TESADT films exhibit smooth, plate-like features, and GIXD data show a complete structural transformation to (001)-oriented crystallite, a much favored structure for efficient hole transport. The highest OFET mobility reaches 2.70 cm-1V-1s-1, with the median mobility averaged over 15 devices equal to 1.4 cm-1V-1s-1.
    In part (II) experiment, we used the strong electron-acceptor 2,3,5,6-tetrafluoro- 7,7,8,8-tetracyanoquinodimethane (F4-TCNQ), as a dopant in diF-TESADT thin film to improve the charge transfer properties. We investigated how the energy levels of organic semiconducting thin films of diF-TESADT change with the F4-TCNQ dopant concentration with ultraviolet photoemission spectroscopy (UPS) and x-ray photoemission spectroscopy (XPS). The results showed that the shift the energy level of diF-TESADT -0.3 eV. The effect of solvent vapor annealing on the morphology and device performance of thin films was also investigated. When molar dopant ratio of reaches 0.37%, the unvanished plate-like features give a small degradation of mobility but the devices averaged threshold voltage shifts from 21.3 V to 1.47 V. We concluded the dramatic VTH variation is presumably due to the structure reorganization of thin film when post annealing. As a consequence, F4-TCNQ effectively neutralized the residual dipoles at the interface between semiconductor layer and the dielectric substrate.

    摘要 i Abstract iii 誌謝 iv 目錄 v 圖目錄 x 表目錄 xvi 第一章 序論 1 1.1有機半導體材料簡述 1 1.2有機半導體材料的獨特性質 5 1.2.1有機薄膜電晶體之結構說明 5 1.2.2透過分子設計賦予有機半導體材料特殊物性 5 1.2.3材料與基材的介面影響電晶體的電性 8 1.2.4利用簡易方式提升有機半導體薄膜的結晶性 9 1.2.5 有機半導體薄膜之電洞摻雜效應 10 1.3研究動機與目的 13 第二章 實驗技術背景與數據分析 14 2.1 同步輻射光源 14 2.2 近緣X光吸收細微結構(Near-Edge X-ray Absorption Fine Structure,NEXAFS)光譜 16 2.2.1 NEXAFS光譜原理 16 2.2.2 NEXAFS量測方式 21 2.3 X光光電子能譜(X-ray Photoemission Spectroscopy,XPS)原理 26 2.4紫外光光電子能譜(Ultraviolet Photoemission Spectroscopy,UPS)原理 28 2.5 X光繞射分析(X-ray Diffraction,XRD) 31 2.6 原子力顯微鏡(Atomic Force Microscope,AFM)原理 33 2.7 有機場效電晶體 35 2.7.1 場效電晶體簡介 35 2.7.2 有機場效電晶體工作原理 36 2.7.3 場效電晶體電流與電壓的關係 39 第三章 實驗藥品、儀器設備與實驗步驟 42 3.1 實驗藥品 42 3.2 實驗儀器 44 3.3 超高真空實驗系統與樣品傳送 45 3.3.1 超高真空實驗系統 45 3.3.2 超高真空的達成 47 3.3.3 真空樣品傳送 48 3.4 利用Piranha溶液清洗矽晶片Si (100) 48 3.5 矽晶片表面自組裝薄膜成長 49 3.6可溶性有機分子之旋轉塗佈 49 3.7 F4-TCNQ摻雜溶液的製備 50 3.8 溶劑蒸氣誘導再結晶步驟 50 3.9 加熱退火步驟 51 3.10 垂直平面X光繞射實驗方式 51 3.11 掠入射X光繞射實驗方式 51 3.12 以Kiessig Fringe估算diF-TESADT薄膜厚度 52 3.13 UPS實驗方式與能量校正 54 3.14 XPS實驗方式與能量校正 55 3.15 NEXAFS實驗方式與數據處理 56 3.16 有機場效電晶體的製作與量測 57 3.16.1金屬蒸鍍系統 58 3.16.2 量測系統與流程 60 3.16.3 定區域量測 61 第四章 第一部分實驗結果與討論 62 4.1.1 旋轉塗佈之溶劑的選擇 62 4.1.2 diF-TESADT在4-PBTS修飾前後的矽晶片上之成長形貌 65 4.1.3 溶劑蒸氣再結晶之溶劑的選擇 66 4.1.4 溶劑蒸氣誘導再結晶條件 69 4.1.5加熱退火條件 72 4.1.6 AFM影像觀察與分析結果整理 74 4.2 垂直平面方向(out-of-plane) XRD結果 76 4.3 以掠入射角X光繞射(GIXD)分析diF-TESADT沿平面的結晶性 79 4.3.1 掠入射X光繞射 2D影像圖的解讀與繞射訊號標訂 79 4.3.2 二種diF-TESADT晶格中以(001)、(111)、(11 ⃑1)為垂直方向的分子排列 82 4.3.3 經四種不同處理方式之diF-TESADT薄膜之晶體排列方式的變化 86 4.3.4 diF-TESADT晶體的成長方向[010] 90 4.3.5 綜合討論 91 4.4 NEXAFS結果分析 93 4.4.1 diF-TESADT之碳NEXAFS吸收光譜與□環在表面的傾角估計 93 4.4.2 diF-TESADT薄膜經不同條件再結晶處理後其分子的□環傾角 96 4.5 UPS能譜分析 99 4.6 有機場效電晶體量測結果 101 4.7結語 107 第五章 第二部分實驗結果與討論 108 5.1 F4-TCNQ摻雜後diF-TESADT薄膜之光電子能譜 109 5.1.1 F4-TCNQ摻雜後diF-TESADT薄膜之UPS能譜 109 5.1.2 F4-TCNQ摻雜後diF-TESADT薄膜之XPS能譜 112 5.1.3 觀察摻雜後的有機薄膜各個能階位移現象 114 5.2 NEXAFS之碳-K edge吸收光譜與芳香環傾角計算 116 5.3 摻雜的diF-TESADT薄膜經溶劑蒸氣誘導再結晶的AFM影像圖 118 5.4摻雜並經溶劑再結晶之diF-TESADT薄膜製成電晶體之電性表現 121 5.5結語 125 第六章 結論 127 第七章 參考資料 129

    (1) Gelinck, G. H.; Huitema, H. E. A.; Van Veenendaal, E.; Cantatore, E.; Schrijnemakers, L.; Van der Putten, J.; Geuns, T. C. T.; Beenhakkers, M.; Giesbers, J. B.; Huisman, B. H.; Meijer, E. J.; Benito, E. M.; Touwslager, F. J.; Marsman, A. W.; Van Rens, B. J. E.; De Leeuw, D. M. Nat. Mater. 2004, 3, 106.
    (2) Zhou, L. S.; Wanga, A.; Wu, S. C.; Sun, J.; Park, S.; Jackson, T. N. Appl. Phys. Lett. 2006, 88, 083502.
    (3) Chwang, A. B.; Rothman, M. A.; Mao, S. Y.; Hewitt, R. H.; Weaver, M. S.; Silvernail, J. A.; Rajan, K.; Hack, M.; Brown, J. J.; Chu, X.; Moro, L.; Krajewski, T.; Rutherford, N. Appl. Phys. Lett. 2003, 83, 413.
    (4) Clemens, W.; Fix, I.; Ficker, J.; Knobloch, A.; Ullmann, A. J. Mater. Res. 2004, 19, 1963.
    (5) Kelley, T. W.; Baude, P. F.; Gerlach, C.; Ender, D. E.; Muyres, D.; Haase, M. A.; Vogel, D. E.; Theiss, S. D. Chem. Mater. 2004, 16, 4413.
    (6) Gundlach, D. J.; Royer, J. E.; Park, S. K.; Subramanian, S.; Jurchescu, O. D.; Hamadani, B. H.; Moad, A. J.; Kline, R. J.; Teague, L. C.; Kirillov, O.; Richter, C. A.; Kushmerick, J. G.; Richter, L. J.; Parkin, S. R.; Jackson, T. N.; Anthony, J. E. Nat Mater 2008, 7, 216.
    (7) Newman, C. R.; Frisbie, C. D.; da Silva, D. A.; Bredas, J. L.; Ewbank, P. C.; Mann, K. R. Chem. Mater. 2004, 16, 4436.
    (8) Zaumseil, J.; Sirringhaus, H. Chem. Rev. 2007, 107, 1296.
    (9) Veres, J.; Ogier, S.; Lloyd, G.; de Leeuw, D. Chem. Mater. 2004, 16, 4543.
    (10) Rogers, J. A.; Bao, Z. N.; Raju, V. R. Appl. Phys. Lett. 1998, 72, 2716.
    (11) Sirringhaus, H.; Kawase, T.; Friend, R. H.; Shimoda, T.; Inbasekaran, M.; Wu, W.; Woo, E. P. Science 2000, 290, 2123.
    (12) Bao, Z. N.; Rogers, J. A.; Katz, H. E. J. Mater. Chem. 1999, 9, 1895.
    (13) Facchetti, A. Mater. Today 2007, 10, 28.
    (14) Jurchescu, O. D.; Subramanian, S.; Kline, R. J.; Hudson, S. D.; Anthony, J. E.; Jackson, T. N.; Gundlach, D. J. Chem. Mater. 2008, 20, 6733.
    (15) Park, S. K.; Mourey, D. A.; Subramanian, S.; Anthony, J. E.; Jackson, T. N. Appl. Phys. Lett. 2008, 93, 043301.
    (16) Hasegawa, T.; Takeya, J. Science and Technology of Advanced Materials 2009, 10, 024314.
    (17) Kim, C.; Huang, P.-Y.; Jhuang, J.-W.; Chen, M.-C.; Ho, J.-C.; Hu, T.-S.; Yan, J.-Y.; Chen, L.-H.; Lee, G.-H.; Facchetti, A.; Marks, T. J. Org. Electron. 2010, 11, 1363.
    (18) Chen, M. C.; Kim, C.; Chen, S. Y.; Chiang, Y. J.; Chung, M. C.; Facchetti, A.; Marks, T. J. J. Mater. Chem. 2008, 18, 1029.
    (19) Subramanian, S.; Park, S. K.; Parkin, S. R.; Podzorov, V.; Jackson, T. N.; Anthony, J. E. J. Am. Chem. Soc. 2008, 130, 2706.
    (20) Chua, L. L.; Zaumseil, J.; Chang, J. F.; Ou, E. C. W.; Ho, P. K. H.; Sirringhaus, H.; Friend, R. H. Nature 2005, 434, 194.
    (21) Dimitrakopoulos, C. D.; Malenfant, P. R. L. Adv. Mater. 2002, 14, 99.
    (22) Silberzan, P.; Leger, L.; Ausserre, D.; Benattar, J. J. Langmuir 1991, 7, 1647.
    (23) Wang, S. D.; Miyadera, T.; Minari, T.; Aoyagi, Y.; Tsukagoshi, K. Appl. Phys. Lett. 2008, 93, 043311.
    (24) Kline, R. J.; Hudson, S. D.; Zhang, X.; Gundlach, D. J.; Moad, A. J.; Jurchescu, O. D.; Jackson, T. N.; Subramanian, S.; Anthony, J. E.; Toney, M. F.; Richter, L. J. Chem. Mater. 2011, 23, 1194.
    (25) Guo, D.; Ikeda, S.; Saiki, K.; Miyazoe, H.; Terashima, K. J. Appl. Phys. 2006, 99.
    (26) Mayer, A. C.; Lloyd, M. T.; Herman, D. J.; Kasen, T. G.; Malliaras, G. G. Appl. Phys. Lett. 2004, 85, 6272.
    (27) Huang, J.-H.; Li, K.-C.; Kekuda, D.; Padhy, H. H.; Lin, H.-C.; Ho, K.-C.; Chu, C.-W. J. Mater. Chem. 2010, 20, 3295.
    (28) Mascaro, D. J.; Thompson, M. E.; Smith, H. I.; Bulovic, V. Org. Electron. 2005, 6, 211.
    (29) Lee, W. H.; Kim, D. H.; Cho, J. H.; Jang, Y.; Lim, J. A.; Kwak, D.; Choa, K. Appl. Phys. Lett. 2007, 91, 3.
    (30) Zhao, Y.; Xie, Z. Y.; Qu, Y.; Geng, Y. H.; Wang, L. X. Appl. Phys. Lett. 2007, 90, 3.
    (31) Dickey, K. C.; Anthony, J. E.; Loo, Y. L. Adv. Mater. 2006, 18, 1721.
    (32) Wang, C.-H.; Cheng, Y.-C.; Su, J.-W.; Fan, L.-J.; Huang, P.-Y.; Chen, M.-C.; Yang, Y.-W. Org. Electron. 2010, 11, 1947.
    (33) Jung, B.-J.; Chikamatsu, M.; Azumi, R.; Yoshida, Y.; Yase, K.; Do, L.-M.; Shim, H.-K. J. Mater. Chem. 2007, 17, 1416.
    (34) Ma, L.; Lee, W. H.; Park, Y. D.; Kim, J. S.; Lee, H. S.; Cho, K. Appl. Phys. Lett. 2008, 92, 063310.
    (35) Yim, K.-H.; Whiting, G. L.; Murphy, C. E.; Halls, J. J. M.; Burroughes, J. H.; Friend, R. H.; Kim, J.-S. Adv. Mater. 2008, 20, 3319.
    (36) Vanoni, C.; Jung, T. A.; Tsujino, S. Appl. Phys. Lett. 2009, 94, 253306.
    (37) Abe, Y.; Hasegawa, T.; Takahashi, Y.; Yamada, T.; Tokura, Y. Appl. Phys. Lett. 2005, 87, 153506.
    (38) Vanoni, C.; Tsujino, S.; Jung, T. A. Appl. Phys. Lett. 2007, 90, 193119.
    (39) 沈鼎昌 神奇的光–同步輻射; 牛頓出版股份有限公司, 1999.
    (40) 國家同步輻射中心 什麼是同步加速器光源?, http://www.nsrrc.org.tw/chinese/lightsource.aspx.
    (41) Stöhr, J. NEXAFS spectroscopy; Springer-Verlag: Berlin ; New York, 1992.
    (42) Surface Analysis-The Principal Techniques; Vickerman, J. T., Ed.; John Wiley & Sons: New York, 1997.
    (43) Kolasinski, K. W. Surface science : foundations of catalysis and nanoscience; Wiley: New York, 2002.
    (44) Ito, Y.; Virkar, A. A.; Mannsfeld, S.; Oh, J. H.; Toney, M.; Locklin, J.; Bao, Z. A. J. Am. Chem. Soc. 2009, 131, 9396.
    (45) Christmann, K. Introduction to surface physical chemistry; Steinkopff ; Springer-Verlag: Darmstadt New York, 1991.
    (46) Kahn, A.; Koch, N.; Gao, W. Y. J. Polym. Sci., Part B: Polym. Phys. 2003, 41, 2529.
    (47) Schlaf, R. Tutorial on Work Function, 2007.
    (48) Wan, A.; Hwang, J.; Amy, F.; Kahn, A. Org. Electron. 2005, 6, 47.
    (49) Ron Jenkins ; Snyder, R. L. Introduction to X-Ray Powder Diffractometry; John Wiley & Sons: New York, 1996; Vol. 138.
    (50) Skoog, D. A.; Holler, F. J.; Nieman, T. A. Principles of instrumental analysis; 5th ed.; Saunders College Pub. : Harcourt Brace College Publishers: Philadelphia, 1998.
    (51) Smith, M. B.; Efimenko, K.; Fischer, D. A.; Lappi, S. E.; Kilpatrick, P. K.; Genzer, J. Langmuir 2007, 23, 673.
    (52) Wang, M. J.; Liechti, K. M.; Wang, Q.; White, J. M. Langmuir 2005, 21, 1848.
    (53) Michael C. Petty Molecular Electronics From Principles to Practice; Wiley: United Kingdom, 2007.
    (54) Jia, H.; Pant, G. K.; Gross, E. K.; Wallace, R. M.; Gnade, B. E. Org. Electron. 2006, 7, 16.
    (55) Huang, Z. Y.; Wang, P. C.; MacDiarmid, A. G.; Xia, Y. N.; Whitesides, G. Langmuir 1997, 13, 6480.
    (56) Choi, H. Y.; Kim, S. H.; Jang, J. Adv. Mater. 2004, 16, 732.
    (57) Jurchescu, O. D.; Mourey, D. A.; Subramanian, S.; Parkin, S. R.; Vogel, B. M.; Anthony, J. E.; Jackson, T. N.; Gundlach, D. J. Phys. Rev. B 2009, 80, 085201.
    (58) Watkins, N. J.; Gao, Y. J. Appl. Phys. 2003, 94, 5782.
    (59) Fukagawa, H.; Yamane, H.; Kataoka, T.; Kera, S.; Nakamura, M.; Kudo, K.; Ueno, N. Phys. Rev. B 2006, 73, 245310.
    (60) Possanner, S. K.; Zojer, K.; Pacher, P.; Zojer, E.; Schürrer, F. Adv. Funct. Mater. 2009, 19, 958.
    (61) Pernstich, K. P.; Haas, S.; Oberhoff, D.; Goldmann, C.; Gundlach, D. J.; Batlogg, B.; Rashid, A. N.; Schitter, G. J. Appl. Phys. 2004, 96, 6431.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE