研究生: |
李偉嘉 Li, Wei-Chia |
---|---|
論文名稱: |
無線感測網路中利用多重階段分散式檢測法之節能研究 Multi-stage Distributed Detection for Energy-saving in Wireless Sensor Networks |
指導教授: |
蔡育仁
Tsai, Yuh-Ren |
口試委員: |
洪樂文
吳卓諭 蔡育仁 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 48 |
中文關鍵詞: | 無線感測網路 、節能 、多重階段檢測法 、感測網路耗能 、階段門檻值 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這篇論文中,我們處理的是一個在無線感測網路中的檢測問題。無線感測網路包含一個資料匯集中心與許多的感測器。我們將傳統的檢測問題分成多個階段提出多重階段分散式檢測法,利用每階段所需要不同數目的感測器和每階段不同的門檻來達到節省無線感測網路耗能的效果。
我們考慮每個感測器會將接收到的訊號進行初級的檢測做出一個初級決策,這個初級決策的結果會受到觀測通道的可加性高斯白雜訊影響有可能會產生初級決策的錯誤,每個感測器會根據多重階段分散式檢測法由資料匯集中心通知是否將自己的初級決策經由一個理想通道傳送至資料匯集中心。
我們的目標是希望在我們可接受的檢測錯誤要求之下降低我們的平均傳送次數(平均傳送次數與系統傳輸耗能成正比),為了達到此目的我們必須利用最佳化問題計算出每一個階段所需要的感測器數目和門檻值,我們討論的兩種檢測錯誤要求來去限制提出的方法:檢測錯誤率要求以及假警報機率要求。
在最後的結果我們可以看到在我們提出的多重階段分散式檢測法可以有效的降低系統耗能,尤其是在低訊雜比的情況更是明顯,而即使是在高訊雜比的情況也能維持與傳統方法一樣的耗能,簡而言之,我們提出了一個可行的檢測法來有效的降低無線感測網路中的耗能達到節能的效果。
[1] S. Appadwedula, V. V. Veeravalli and D. L. Jones, “Energy-Efficient Detection in Sensor Networks,” IEEE J. Sel. Areas Commun., vol. 23, no. 4, pp. 693-702, Apr. 2005.
[2] T. Q. S. Quek, D. Dardari and M. Z. Win, “Energy Efficiency of Dense Wireless Sensor Networks: To Cooperate or Not to Cooperate,” IEEE J. Sel. Areas Commun., vol. 25, no. 2, pp. 459-470, Feb. 2007.
[3] B. M. Sadler, “Fundamentals of Energy-Constrained Sensor Network Systems,” IEEE Aerosp. Electron. Syst. Mag., vol. 20, no. 8, pp. 17-35, Aug. 2005.
[4] S. Sardellitti, S. Barbarossa and L. Pezzolo, “Distributed Double Threshold Spatial Detection Algorithms in Wireless Sensor Network,” in Proc. Signal Processing Advances in Wireless Communications. (SPAWC), Perugia, Jun. 2009, pp. 51-55.
[5] Y. R. Tsai and L. C. Lin, “Sequential Fusion with Truncated SPRT for Event Detection in Centralized and Decentralized Wireless Sensor Networks,” in Proc. Vehicular Technology Conference-Fall (VTC), Anchorage, Sep. 2009, pp. 1-5.
[6] H. Jeon, J. Choi, H. Lee and J. Ha, “Channel-Aware Energy Efficient Transmission Strategies for Large Wireless Sensor Networks,” IEEE Signal Process. Lett., vol. 17, no.7,pp. 643-646, Jul.2010.
[7] Y. W. Hong and A. Scaglione, “Energy-Efficient Broadcasting with Cooperative Transmissions in Wireless Sensor Networks,” IEEE Trans. Wireless Commun., vol. 5, no. 10, pp. 2844-2855, Oct. 2006.
[8] O. Ocakoglu and O. Ercetin, “Energy Efficient Random Sleep-Awake Schedule Design,” IEEE Commun. Lett., vol. 10, no. 7, pp. 528-530, Jul. 2006.
[9] K. Sinha, B. P. Sinha and D. Datta, “An Energy-Efficient Communication Scheme for Wireless Networks: A Redundant Radix-Based Approach,” IEEE Trans. Wireless Commun., vol. 10, no. 2, pp. 550-559, Feb. 2011.
[10] C. T. Cheng, C. K. Tse and F. C. M. Lau, “An Energy-Aware Scheduling Scheme for Wireless Sensor Networks,” IEEE Trans. Veh. Technol., vol. 59, no. 7, pp. 3427-3444, Sep. 2010.
[11] J. Chen, J. Li, S. He, Y. Sun and H. H. Chen, “Energy-Efficient Coverage Based on Probabilistic Sensing Model in Wireless Sensor Networks,” IEEE Commun. Lett., vol. 14, no. 9, pp. 833-835, Sep. 2010.
[12] W. Li and H. Dai, “Energy-Efficient Distributed Detection Via Multihop Transmission in Sensor Networks,” IEEE Signal Process. Lett., vol. 15, pp. 265-268, Feb. 2008.
[13] E. Masazade, R. Rajagopalan, P. K. Varshney, C. K. Mohan, G. K. Sendur and M. Keskinoz, “A Multiobjective Optimization Approach to Obtain Decision Thresholds for Distributed Detection in Wireless Sensor Networks,” IEEE Trans. Syst., Man, Cybern. A, Syst., Humans., vol. 40, no. 2, pp. 444-457, Apr. 2010.
[14] Z. Zhou, S. Zhou, S. Cui and J. H. Cui, “Energy-Efficient Cooperative Communication in a Clustered Wireless Sensor Network,” IEEE Trans. Veh. Technol., vol. 57, no. 6, pp. 3618-3628, Nov. 2008.
[15] G. Thatte, M. Li, S. Lee, B. A. Emken, M. Annavaram, S. Narayanan, D. S. Metz and U. Mitra, “Optimal Time-Resource Allocation for Energy-Efficient Physical Activity Detection,” IEEE Trans. Signal Process., vol. 59, no. 4, pp. 1843-1857, Apr. 2011.
[16] Y. Yang, R. S. Blum and B. M. Sadler, “Energy-Efficient Routing for Signal Detection in Wireless Sensor Networks,” IEEE Trans. Signal Process., vol. 57, no. 6, pp. 2050-2063, Jun. 2009.
[17] D. M. Dicarlo and C. L. Weber, “Multiple Dwell Serial Search: Performance and Application to Direct Sequence Code Acquisition,” IEEE Trans. Commun., vol. 31, pp. 650-659, May. 1983.
[18] R. L. Peterson, R. E. Ziemer and D. E. Borth, Introduction to Spread-Spectrum Communication. Prentice Hall International, 1995.
[19] G. Ferrari and R. Pagliari, “Decentralized Binary Detection with Noisy Communication Links,” IEEE Trans. Aerosp. Electron. Syst., vol.42, pp. 1554-1563, Oct. 2006.
[20] S. M. Kay, Fundamentals of Statistical Signal Processing Volume II Detection Theory. Prentice Hall PTR, 1993.
[21] W. Feller, An Introduction to Probability Theory and Its Applications. John Wiley & Sons, 1967.
[22] A. R. Meyer and C. Smyth, Mathematics for Computer Science. Massachusetts Institute of Technology, 2007.
[23] X. Chen, R. Blum and B. M. Sadler, “A New Scheme for Energy-Efficient Estimation in a Sensor Network,” in Proc. Information Sciences and Systems (CISS), Baltimore, Mar. 2009, pp. 799-804.
[24] S. Ghahramani, Fundamentals of Probability. Prentice Hall International, 2000.
[25] F. W. J. Olver, D. M. Lozier and R. F. Boisvert, NIST Handbook of Mathematical Functions. Cambridge University Press, 2010.
[26] H. V. Poor, An Introduction to Signal Detection and Estimation. New York: Wiley, 1991.