簡易檢索 / 詳目顯示

研究生: 魏碩
Wei Shou
論文名稱: A23187,THAPSIGARGIN或GELDANAMYCIN引發之葡萄糖調控蛋白78於9L大鼠腦瘤細胞粒線體中的表現
MITOCHONDRIAL LOCALIZATION OF THE GRP78 IN 9L RAT BRAIN TUMOR CELLS AFTER TREATMENTS WITH A23187, THAPSIGARGIN OR GELDANAMYCIN
指導教授: 黎耀基博士
Dr. Yiu-Kay Lai
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生命科學系
Department of Life Sciences
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 40
中文關鍵詞: 葡萄糖調控蛋白78A23187thapsigargingeldanamycin粒線體
外文關鍵詞: grp78, A23187, thapsigargin, geldanamycin, mitochondria
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 葡萄糖調控蛋白78 (Glucose-Regulated Protein 78, GRP78) 位於內質網中,具有鈣離子結合能力以及保護子的功能,能夠幫助新合成之蛋白質的折疊,使其具有正確的功能和結構。當細胞處於逆境環境下,會誘發細胞中GRP78表現增加。根據之前的研究發現,在鈣離子攜帶劑A23187和內質網上的鈣離子通道抑制劑thapsigargin (TG) 的個別處理下,皆會造成細胞質的鈣離子濃度上升,而引發GRP78的合成增加。這和90kDa熱休克蛋白抑制劑geldanamycin (GA) 所造成的細胞內質網中蛋白質的摺疊不正常,而誘導GRP78合成增加的機制是不相同的。此外,細胞在此三種藥物處理下,GRP78在細胞中的超微分布也尚未明瞭。
    我們以9L大白鼠腦腫瘤細胞為材料,探討A23187、TG和GA誘發GRP78表現所產生的GRP78的超微分布。利用共軛焦顯微鏡技術,我們發現在A23187,TG和GA的個別處理下,GRP78會重新分布,不再完全位於內質網中﹔但GA所誘發GRP78的重新分布則較無此明顯趨勢。另一方面,藉由胞器分離實驗、共軛焦顯微鏡技術和免疫膠體金顯微鏡技術的相互證明,我們首次發現,細胞在A23187、TG和GA處理下,所誘發的GRP78的確會出現於粒線體之中。因此,我們可以歸納出,相對於GA而言,A23187和TG所誘發GRP78表現的機制應是較一致的。除此之外,在藥物處理過後,GRP78也不只僅存在於內質網之中,會轉而出現於粒線體,而存在於粒線體之中的GRP78也必定扮演著重要且未知的角色。


    In the previous study, it has been found that the syntheses of the 78kDa glucose-regulated protein (GRP78) were vigorously induced by stresses, such as A23187, thapsigargin (TG) and geldanamycin (GA) in 9L rat brain tumor (RBT) cell line. In this study, we have found that an 8h treatment with either 2 μM A23187 or 300 nM TG caused the redistribution of GRP78 in 9L RBT cells. GRP78 exhibited the pattern outside the ER when respectively treated with A23187 and TG, but this phenomenon was less obvious after 5 μM GA treatment for 8h. Although GRP78 are primarily localized in the endoplasmic reticulum (ER), subcellular fractionation study showed that the stress-induced GRP78 was in the mitochondria-enriched fraction in from 9L RBT cells. Furthermore, confocal microscopic and immunogold electron microscopic studies confirmed that the stress-induced GRP78 was indeed localized in mitochondria. These results indicate that GRP78 is not present exclusively in the ER after stressed. This is the first report demonstrating that GRP78 is localized in mitochondria in 9L RBT cells after being exposed to GRP78-inducing stresses.

    一、 中文摘要……………………………………………………1 二、 英文附錄 1. ABSTRACT……………………………………………………...2 2. INTRODUCTION………………………………………………..3 3. EXPERIMENTAL PROCEDURES……………………………....6 4. RESULTS………..………………………………………………10 5. DISCUSSION……………………………………………………14 6. REFERENCES…………………………………………………..17 7. FIGURE LEGENDS…………………..…………………………23 8. FIGURES…………………………..……………………………26

    Altmeyer, A, Maki, R. G., Feldweg, A. M., Heike, M., Protopopov, V. P., Masur, S. K., and Srivastava, P. K. (1996): Tumor-specific cell surface expression of the KDEL containing, endoplasmic reticular heat shock protein gp96. Int J Can 69, 340-349
    Bastianutto, C., Clementi, E., Codazzi, F., Podini, P., De Giorgi, F., Rizzuto, R., Meldolesi, J., and Pozzan, T. (1995): Overexpression of calreticulin increases the Ca2+ capacity of rapidly exchanging Ca2+ stores and reveals aspects of their lumenal microenvironment and function. J. Cell. Biol. 130, 847-855
    Bergeron, J. J. M., Bernner, M. B., Thomas, D. Y., and Williams, D. B. (1994): Calnexin: a membrane-bound chaperone of the endoplasmic reticulum. Trends Biochem. Sci. 19, 124-128
    Chen, L. Y., Chiang, A. S., Hung, J. J., Hung, H. I., and Lai, Y. K. (2000): Thapsigargin-induced grp78 expression is mediated by the increse of cytosolic free calcium in 9L rat brain tumor cells. J. Cell. Biochem. 78, 404-416
    Drummond, I. A., Lee, A. S., Resendez, E. Jr., and Steinhardt, R. A. (1987): Depletion of intracellular calcium stores by calcium ionophore A23187 induces the genes for glucose-regulated proteins in human fibroblasts. J. Biol. Chem. 262, 12801-12805
    Delpino, A., Piselli, P., Vismara, D., Vendett, S., and Colizz, V. (1998): Cell surface localization of the 78kD glucose regulated protein (GRP78) induced by thapsigargin. Mol. Membr. Biol. 15, 21-26
    Hendershot, L. M., Ting, J., and Lee, A. S. (1998): Identity of the immnoglobulin heavy chain binding protein with the 78,000-dalton glucose-regulated protein and the role of posttranslational modifications in its binding function. Mol. Cell. Biol. 8, 4250-4256
    Hou, M. C., Shen, C. H., Lee, W. C. and Lai, Y. K. (1993): Okadaic acid as an inducer of the 78 kDa glucose-regulated protein in 9L rat brain tumor cells. J. Cell. Biochem. 51, 91-101
    Kozutsumi, Y., Segal, M., Normington, K., Gething, M. J., and Sambrook, J. (1988): The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature 332, 462-464
    Kuznetsov, G., Chen, L.B., and Nigam, S. K. (1994): Several endoplasmic reticulum stress proteins, including ERp72, interact with thyroglobulin during its maturation. J. Biol. Chem. 269, 22990-22995
    Lawson, B., Brewer, J. W., and Hendershot, L. M. (1998): Geldanamycin, an hsp90/GRP94-binding grug, induces increased transcription of endoplasmic reticulum (ER) chaperones via the stress pathway. J. Cell. Physiol. 174, 170-178
    Lee, A. S. (1992): Mammalian stress response: induction of the glucose-regulated protein family. Curr. Opin. Cell. Biol. 4, 267-273
    Li, W. W., Alexandre, S., Cao, X., and Lee, A. S. (1993): Transactivation of the grp78 promoter by Ca2+ depletion. A comparative analysis with A23187 and the endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin. J. Biol. Chem. 268, 12003-12009
    Liao, J., Price, D., and Omary, M. B. (1997): Association of glucose-regulated protein (grp78) with human keratin 8. FEBS Lett. 417, 316-320
    Lievremont, J. P., Rizzuto, R., Hendershot, L., and Meldolesi, J. (1997): BiP a major chaperone protein of the endoplasmic reticulum lumen plays a direct and important role in the storage of the rapidly exchanging pool of Ca2+. J. Biol. Chem. 272, 30873-30879
    Little, E, Ramakrishnan, M., Roy, B., Gazit, G., and Lee, A. S. (1994): The glucose-regulated proteins (GRP78 and GRP94): functions, gene regulation, and applications. Crit. Rev. Eucaryotic Gene Expression 4, 1-18
    Liu, E. S., Ou, J. H., and Lee, A. S. (1992): Brefeldin A as a regulator of grp78 gene expression in mammalian cells. J. Biol. Chem. 267, 7128-7133
    Lodish, H. F., Kong, N., and Wikstrom, L. (1992): Calcium is required for folding of newly made subunits of the asialoglycoprotein receptor within the endoplasmic reticulum. J. Biol. Chem. 267, 12753-12760
    Meldolesi, J., and Pozzan, T. (1998): The endoplasmic reticulum Ca2+ store: a view from the lumen. Trends Biochem. Sci. 23, 10-14
    Merrick, B. A., He, C., Witcher, L. L., Patterson, R. M., Reid, J. J., Rence-Pawlowski, P. M., and Selkirk, J. K. (1996): HSP binding and mitochondrial localization of p53 protein in human HT1080 and mouse C3H10T1/2 cell line. Biochim. Biophys. Acta 1297, 57-68
    Michalak, M., Milner, R. E., Burns, K., and Opas, M. (1992): Calreticulin. Biochem. J. 285, 681-692
    Michalak, M., Corbett, E. F., Mesaeli, N., Nakamura, K., and Opas, M. (1999): Calreticulin: one protein, one gene, many functions. Biochem. J. 344, 281-292
    Munro, S., and Palham, H. R. B. (1988): A hsp70-like protein in the ER: Identity with the 78 kD glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell 57, 1223-1236
    Nishikawa, S. I., Hirata, A., and Nakano, A. (1994): Inhibition of endoplasmic reticulum (ER)-to-golgi transport induces relocalization of binding protein (BiP) within the ER to form the BiP bodies. Mol. Biol. Cell. 5, 1129-1143
    Qitao, R., Renu, W., Rena, K., Kaul, S. C., Sifers, R. N., Bick, R. J., Smith, J. R., and Pereira-Smith, O. M. (2000): Extramitochondrial localization of mortalin/mthsp70/PBP74/GRP75. Biochem. Biophys. Res. Commun. 275, 174-179
    Resendez, E. Jr., Attenello, J. W., Grafsky, A., Chang, C. S., and Lee, A. S. (1985): Calcium ionophore A23187 induces expression of glucose-regulated genes and their heterologous fusion genes. Mol. Cell. Biol. 5, 1212-1219
    Sambrook, J. F. (1990): The involvement of calcium in transport of secretory proteins from the endoplasmic reticulum. Cell 61, 197-199
    Shiu, R. P. C., Pouyssegur, J., and Pastan, I. (1977): Glucose depletion accounts for the induction of two transformation-sensitive membrane proteins in Rous sarcoma virus-transformed chick embryo fibroblast. Proc. Natl. Acad. Sci. USA 74, 3840-3844
    Simpson, P. B., Mehotra, S., Lange, G. D., and Russell, J. T (1997): High density distribution of endoplasmic reticulum proteins and mitochondria at specialized Ca2+ release sites in oligodendrocyte processes. J. Biol. Chem. 272, 22654-22661
    Singh, B., Soltys, B. J., Wu, Z. C., Patel, H. V., Freeman, K. B., and Gupta, R. S. (1997): Cloning and some noval characteristic of mitochondrial Hsp70 from Chinese hamster cells. Exp. Cell. Res. 234, 205-216
    Soltys, B. J., and Gupta, R. S. (1996): Immunoelectron microscopic localization of the 60-kDa heat shock chaperonin protein (Hsp60) in mammalian cells. Exp. Cell. Res. 222, 16-27
    Soltys, B. J., and Gupta, R. S. (1999): Mitochondrial-matrix proteins at unexpected locations: are they exported? TIBS 24, 174-177
    Suzuki, C. K., Bonifacino, J. S., Lin, A. Y., Davis, M. M., and Klausner, R. D. (1991): Regulating the retention of T-cell receptor alpha chain variants within the endoplasmic reticulum: Ca(2+)-dependent association with BiP. J. Cell. Biol. 114, 189-205
    Supko, J. G., Hickman, R. L., Grever, M. R., and Malspeis, L. (1995): Preclinical pharmacologic evalution of geldanamycin as an antitumor agent. Cancer Chemother. Pharmacol. 36, 305-315
    Takemoto, H., Yoshimori, T., Yamamoto, A., Miyata, Y., Yahara, I., Inoue, K., and Tashiro, Y. (1992): Heavy chain binding protein (BiP/GRP78) and endoplasmin are exported from the endoplasmic reticulum in rat exocrine pancreatic cells, similar to protein disulfide-isomerase. Arch. Biol. Biophys 296, 129-136
    Thastrup, O.,Dawson, A. P., Scharff, O., Foder, B., Cullen, P. J., Drobak, B. K., Bjerrum, R. J., Christensen, S. B., and Hanley, M. R. (1994): Thapsigargin a novel molecular probe for studying intracellular calcium release and storage. Agents Actions 43, 187-193
    Treiman, M., Caspersen, C, and Christensen, S. B. (1998): A tool coming of age: thapsigargin as an inhibitor of sarco-endoplasmic reticulum Ca2+-ATPase. Trend Pharmacol Sci. 19, 131-135
    Villa, A., Podini, P., Clegg, D. O., Pozzan, T., and Meldolesi, J. (1991): Intracellular Ca2+ stores in chicken Purkinje neurons: differential distribution of the low affinity-high capacity Ca2+ binding protein, calsequestrin, of Ca2+ ATPase and of the ER lumenal protein, Bip. J. Cell. Biol. 113, 779-791
    Watowich, S. S., and Morimoto, R. I. (1988): Complex regulation of heat shock- and glucose-responsive genes in human cells. Mol. Cell. Biol. 8, 393-405
    Whitesell, L., Shifrin, S. D., Schwab, G., and Neckers, L. M. (1992): Benzoquinonoid ansamycins possess selective tumoricidal activity unrelated to src kinase inhibitor. Cancer Res. 52, 1721-1728
    Xiao, G., Chung, T. F., Pyun, H. Y., Fine, R. E., and Johnson, R. J. (1999): KDEL proteins are found on the surface of NG108-15 cells. Mol. Brain. Res. 72 121-128
    Xiao, N., Callaway, C. W., Lipinski, C. A., Hicks, S. D., and DeFranco, D. B. (1999): Geldanamycin provides posttreatment protection against glutamate-induced oxidative toxicity in a mouse hippocampal cell line. J. Neurochem. 72, 95-101

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE