簡易檢索 / 詳目顯示

研究生: 呂佳翰
David Lyu
論文名稱: 準確地應用電磁場模擬軟體來協助奈米互連電容的驗證
Accurate Applications of Electromagnetic Field Simulation Software for Nanometer Interconnect Capacitance Verification
指導教授: 張克正
Keh-Jeng Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 42
中文關鍵詞: 超大型積體電路可行性設計製程奈米電容抽取互連
外文關鍵詞: VLSI, DFM, Process, Nanometer, Capacitance Extraction, Interconnect
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 晶圓廠在奈米晶圓上準確量測電容與電阻已有充分的經驗與可信的成果。由於互連 (Interconnect) 尺寸 (Dimension) 的縮小、銅製程技術的採用、SoC設計觀念的引進以及高頻晶片的需求大增,使得原本不被重視的寄生效應 (Parasitics),如今卻因為超過八層、超過百萬條複雜互連的寄生效應,成為影響效能的重要因素之一。互連的寄生效應包括了寄生電阻、寄生電容以及寄生電感。由於互連尺寸降低與複雜度提高的影響,使得互連的電阻變大、電容變大、電感效應難以預測。其中,不論高頻抑或低頻晶片,寄生電容都深深地影響了晶片的效能表現 (Performance)。所以,如何有效並正確地估算複雜度提高的寄生電容 (Parasitic Capacitance),成為一個能準確量測電容後仍值得注意的議題。

    在這篇論文當中,除了簡介Raphael的基本原理外,並舉出其使用的例子,以及在Dummy Metal Fills與X-architecture方面的應用與問題。希望藉由這篇論文,能夠對於有效及正確使用Raphael抽取寄生電容,提供使用上的範例及正面的幫助系統晶片的設計。


    Silicon foundries have had sufficient experiences and reliable results in silicon wafer measurements of nanometer interconnect capacitances and nanometer interconnect resistances. Technology has advanced from 180um, 130um, then into 90nm, with material migration from aluminum to copper as well. In addition to technology evolution, SoC and high-frequency design have been introduced for these years. Due to all the above plus more than eight metal layers and millions of interconnects in each system-on-chip (SoC), we have greater parasitic resistance, greater parasitic, more unpredictable inductance than before. As result, parasitics on interconnect becomes the first factor in performance of a chip. Further, parasitic capacitance highly affects performance either in high-frequency or in low-frequency chip. So, how to model parasitic capacitance efficiently and accurately is an issue now.

    In the paper, there will be introduction to Raphael, then two simple examples for tutorial, and applications in x-architecture and dummy metal fills at last. And it will give advices and hints how to correlate parasitic capacitance accurately with silicon measurement to help SoC designs.

    中文摘要...........................................................................................................I Abstract............................................................................................................II 特別感謝.........................................................................................................III Contents........................................................................................................IV List of Figures.................................................................................................V List of Tables.................................................................................................VII Chapter 1 Introduction.....................................................................................1 Chapter 2 Raphael Electromagnetic Field Simulation Software.......................3 2.1 RC2.......................................................................................................3 2.2 RC3.......................................................................................................5 2.3 Neumann Boundary...............................................................................6 2.4 Usage of RC2/RC3................................................................................8 2.5 Taurus-Visual.......................................................................................10 Chapter 3 Nanometer Capacitance Structure Examples................................11 3.1 RC2 Example.......................................................................................11 3.2 RC3 Example.......................................................................................13 Chapter 4 Applications...................................................................................17 4.1 Automatic Quality Assurance...............................................................17 4.2 Intentional Capacitor............................................................................20 4.3 Manhattan Routing and X-architecture................................................24 4.4 Dummy Metal Fills...............................................................................25 Chapter 5 Silicon Measurement and Modeling of Interconnect R,C Variations......................................................................................................................32 5.1 SIPPs and On-Chip Variations.............................................................32 5.2 Field Solver and Variation Enabled Test Structures.............................33 Chapter 6 Conclusions...................................................................................38 Chapter 7 Future Work..................................................................................40 References....................................................................................................41

    [1] K. Cham et al., “Computer-Aided Design and VLSI Device Development,” Second Edition, Kluwer Academic Publishers, pp. 129-136 and pp. 335-348
    [2] K. Chang et al., “Automatic Quality Assurance Methodology to Achieve Accurate RC Extractions for High-Performance VLSI and SoC Designs,“ Proceedings of 2004 VLSI Design/CAD Conference, Ken-Ding, Taiwan, August 2004.
    [3] K. Chang et al., “Accurate 3-D Capacitance Test and Characterization of Dummy Metal Fills to Achieve Design for Manufacturability,” 2005 CMP-MIC Conference, February 2005.
    [4] Synopsys Inc., “Raphael Reference Manual,” version 2003.09, Mountain View, California, September 2003.
    [5] Synopsys Inc., “Taurus Visual User’s Manual,” version 2002.02, Fremont, California, June 2002.
    [6] Magma Inc., “QuickCAP Reference Manual,” version 3.0, Santa Clara, California, November 2003.
    [7] K. Chang et al., “HIVE: An Efficient Interconnect Capacitance Extractor to Support Submicron Multilevel Interconnect Designs,” Proceedings of ACM/IEEE International Conference on Computer-Aided Design (ICCAD), Santa Clara, California, November 1991.
    [8] K. Chang, “Accurate On-Chip Variation Modeling to Achieve Design for Manufacturability,” Proceedings of the 4th IEEE International Workshop on System-on-Chip for Real-Time Applications (IWSOC), 2004.
    [9] K. Chang et al., “Verify On-Chip Inductance Extraction with Silicon Measurement,” EE Times, November 2003.
    [10] J. Chen et al., “An on-chip, attofarad interconnect charge-based capacitance measurement (CBCM) technique,” IEEE Electron Devices Meeting, 1996.
    [11] TSMC, Inc., “Foundry Watch News from TSMC,” Hsinchu, Taiwan, April 2002.
    [12] M. Birnbaum, Essential Electronic Design Automation (EDA), Prentice Hall PTR, USA, November 2003.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE