研究生: |
尤宗富 |
---|---|
論文名稱: |
阿拉伯芥多功能核酸酶的單鏈脫氧核醣核酸結合位的結構研究 Structural insights of the ssDNA binding site in the multifunctional endonuclease AtBFN2 from Arabidopsis thaliana |
指導教授: |
孫玉珠
王惠鈞 |
口試委員: |
蕭傳鐙
林彩雲 馬徹 |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2014 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 54 |
中文關鍵詞: | X光繞射 、核酸酶 、磷酸二酯酶 、n-糖基化 、三核金屬酵素 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
多功能S1/P1核酸酶AtBFN2在酵素分類上被歸類為EC3.1.30.1,它是由阿拉伯芥At1g68290基因編碼的糖蛋白,它的功能為可分解消化RNA,單鏈DNA和雙鏈DNA。AtBFN2需要三個鋅離子的幫助裂解DNA和RNA的3'-OH而得到5'-核苷酸。此外,AtBFN2的酵素活性與聚醣有很強的依賴性。植物的鋅離子依賴性核酸內切酶呈現出獨特的結構折疊,屬於Phospholipase C (PLC)/ P1核酸酶家族。在這個研究工作中,我們提出第一個完整的AtBFN2蛋白質結構,以及硫酸鹽複合物結構,磷酸鹽複合物結構和單鏈DNA的複合物結構。根據這些實驗結果,我們能夠提供更好的聚醣結構組成和可能的酵素機制。與其它核酸酶結構比較,AtBFN2/ligand-free和AtBFN2/PO4模型顯示與之前提出相似的催化機制。我們的數據還證實磷酸鹽和釩酸鹽可以透過佔據活性位點抑制核酸酶的活性。更重要的是,AtBFN2/A5T結構揭示了一個新穎的且保守的第二個單鏈DNA結合位點,其似乎對植物的鋅離子依賴性核酸內切酶是很重要的。基於以上這些發現,我們提出了一個合理的單鏈DNA與AtBFN2結合的模式,其中單鏈DNA包裹自己周圍的蛋白質和連接表面的聚醣,進而強化穩定此複合物結構。
1. Yang W (2011) Nucleases: diversity of structure, function and mechanism. Q Rev Biophys 44: 1–93.
2. Fujimoto M, Kuninaka A, Yoshino H (1974) Identity of phosphodiesterase and phosphomonoesterase activities with nuclease P1(a nucelase from Penicillium citrinum). Agric Biol Chem. 38: 785-790.
3. Vogt VM (1980) Purification and properties of S1 nuclease from Aspergillus. Methods Enzym 65: 248–255.
4. Oleson AE, Sasakuma M (1980) S1 nuclease of Aspergillus oryzae: a glycoprotein with an associated nucleotidase activity. Arch Biochem Biophys 204: 361–370.
5. McCabe PF, Leaver CJ (2000) Programmed cell death in cell cultures. Plant Mol Biol 44: 359–368.
6. Sugiyama M, Ito J, Aoyagi S, Fukuda H (2000) Endonucleases. Plant Mol Biol 44: 387–397.
7. Levine A, Pennell RI, Alvarez ME, Palmer R, Lamb C (1996) Calcium-mediated apoptosis in a plant hypersensitive disease resistance response. Curr Biol 6: 427–437.
8. Perez-Amador MA, Abler ML, De Rocher EJ, Thompson DM, van Hoof A, et al. (2000) Identification of BFN1, a bifunctional nuclease induced during leaf and stem senescence in Arabidopsis. Plant Physiol 122: 169–180.
9. Farage-Barhom S, Burd S, Sonego L, Perl-Treves R, Lers A (2008) Expression analysis of the BFN1 nuclease gene promoter during senescence, abscission, and programmed cell death-related processes. J Exp Bot 59: 3247–3258.
10. Ko CY, Lai YL, Liu WY, Lin CH, Chen YT, et al. (2012) Arabidopsis ENDO2: its catalytic role and requirement of N-glycosylation for function. J Agric Food Chem 60: 5169–5179.
11. Aoyagi S, Sugiyama M, Fukuda H (1998) BEN1 and ZEN1 cDNAs encoding S1-type DNases that are associated with programmed cell death in plants. FEBS Lett 429: 134–138.
12. Yang B, Wen X, Kodali NS, Oleykowski CA, Miller CG, et al. (2000) Purification, cloning, and characterization of the CEL I nuclease. Biochemistry 39: 3533–3541.
13. Ito J, Fukuda H (2002) ZEN1 is a key enzyme in the degradation of nuclear DNA during programmed cell death of tracheary elements. Plant Cell 14: 3201–3211.
14. Podzimek T, Matousek J, Lipovova P, Pouckova P, Spiwok V, et al. (2011) Biochemical properties of three plant nucleases with anticancer potential. Plant Sci 180: 343–351.
15. Till BJ, Burtner C, Comai L, Henikoff S (2004) Mismatch cleavage by single-strand specific nucleases. Nucleic Acids Res 32: 2632–2641.
16. Chou TL, Ko TP, Ko CY, Lin TY, Guo RT, et al. (2013) Mechanistic insights to catalysis by a zinc-dependent bi-functional nuclease from Arabidopsis thaliana. Biocatal Agric Biotechnol 2: 191–195.
17. Romier C, Dominguez R, Lahm A, Dahl O, Suck D (1998) Recognition of single-stranded DNA by nuclease P1: high resolution crystal structures of complexes with substrate analogs. Proteins 32: 414–424.
18. Finn RD, Mistry J, Schuster-Böckler B, Griffiths-Jones S, Hollich V, et al. (2006) Pfam: clans, web tools and services. Nucleic Acids Res 34: D247–51.
19. Maekawa K, Tsunasawa S, Dibo G, Sakiyama F (1991) Primary structure of nuclease P1 from Penicillium citrinum. Eur J Biochem 200: 651–661.
20. Volbeda A, Lahm A, Sakiyama F, Suck D (1991) Crystal structure of Penicillium citrinum P1 nuclease at 2.8 A resolution. EMBO J 10: 1607–1618.
21. Hough E, Hansen LK, Birknes B, Jynge K, Hansen S, et al. (1989) High-resolution (1.5 A) crystal structure of phospholipase C from Bacillus cereus. Nature 338: 357–360.
22. Koval T, Lipovova P, Podzimek T, Matousek J, Duskova J, et al. (2013) Plant multifunctional nuclease TBN1 with unexpected phospholipase activity: structural study and reaction-mechanism analysis. Acta Crystallogr D Biol Crystallogr 69: 213–226.
23. Otwinowski Z, Minor W (1997) Processing of X-raydiffraction data collected in oscillation mode. Methods Enzym 276: 307–326.
24. Brünger AT (1993) Assessment of phase accuracy by cross validation: the free R value. Acta Crystallogr D Biol Crystallogr 49: 24–36.
25. Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, et al. (1998) Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54: 905–921.
26. Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, et al. (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67: 235–242.
27. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60: 2126–2132.
28. Murshudov GN, Vagin AA, Lebedev A, Wilson KS, Dodson EJ (1999) Efficient anisotropic refinement of macromolecular structures using FFT. Acta Crystallogr D Biol Crystallogr 55: 247–255.
29. Murshudov GN, Skubak P, Lebedev AA, Pannu NS, Steiner RA, et al. (2011) REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr 67: 355–367.
30. Chen VB, Arendall 3rd WB, Headd JJ, Keedy DA, Immormino RM, et al. (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66: 12–21.
31. Aakre SE, Little C (1982) Inhibition of Bacillus cereus phospholipase C by univalent anions. Biochem J 203: 799–801.
32. Huyer G, Liu S, Kelly J, Moffat J, Payette P, et al. (1997) Mechanism of Inhibition of Protein-tyrosine Phosphatases by Vanadate and Pervanadate. J Biol Chem 272: 843–851.
33. Garcin ED, Hosfield DJ, Desai SA, Haas BJ, Björas M, et al. (2008) DNA apurinic-apyrimidinic site binding and excision by endonuclease IV. Nat Struct Mol Biol 15: 515–522.
34. Oron A, Wolfson H, Gunasekaran K, Nussinov R (2003) Using DelPhi to compute electrostatic potentials and assess their contribution to interactions. Curr Protoc Bioinformatics Chapter 8: Unit 8.4.
35. Yen Y, Green PJ (1991) Idetification and properties of the major ribonuclease of Arabidopsis thaliana. Plant Physiol 97: 1487-1493.
36. Ellis RE, Yuan JY, Horvitz HR (1991) Mechanisms and functions of cell death. Annu Rev Cell Biol 7: 663-698.
37. Pennell RI, Lamb C (1997) Programmed cell death in plants. Plant Cell 9: 1157-1168.
38. Hilary JR (2005) Cell death and organ development in plants. Curr Top Dev Biol 71: 225-261.
39. Swarbreck D, Wilks C, Lamesch P, Berardini TZ, Garcia-Hernandez M, Foerster H, Li D, Meyer T, Muller R, Ploetz L, Radenbaugh A, Singh S, Swing V, Tissier C, Zhang P, Huala E (2008) The Arabidopsis Information Resource (TAIR): gene structure and function annotation. Nucleic Acid Res 36: D1009-1014.
40. Greene EA, Codomo CA, Taylor NE, Henikoff JG, Till BJ, Reynilds SH, Enns LC, Burtner C, Johnson JE, Odden, AR Comai L, Henikoff S (2003) Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics 164: 731-740.
41. Caldwell DG, McCallum N, Shaw P, Muehlbauer GJ, Marshall DF, Waugh R (2004) A structured mutant population for forward and reverse genetics in Barley (Hordeum vulgare L.). Plant J 40: 143-150.
42. Slade AJ, Fuerstenberg SI, Loeffler D, Steine MN, Facciotti D (2005) A reverse genetic, nontransgenetic approach to wheat corp improvement by TILLING. Nat Biotechnol 23: 75-81.
43. Suzuki T, Eiguchi M, Kumamaru T, Satoh H, Matsusaka H, Moriguchi K, Nagato Y, Kurata N (2008) MNU-induced mutant pools and high performance Tilling enable finding of any gene mutation in rice. Mol Genet Genomics 279: 213-223.
44. Gomez-Mena C, de Folter S, Costa MM, Angenent GC, Sablowski R (2005) Transcriptional program controlled by the floral homeotic gene AGAMOUS during eraly organogenesis. Development 132: 429-438.
45. Guddal PH, Johansen T, Schulstad K, Little C (1989) Apparent phosphate retrieval system in Bacillus cereus. J. Bacteriol 171: 5702-5706.