研究生: |
陳志軒 |
---|---|
論文名稱: |
背點接式結構矽晶太陽能電池特性之模擬分析 Characteristics Analysis of Back Point Contact Silicon Solar Cells by Simulation |
指導教授: | 甘炯耀 |
口試委員: |
黃振昌
吳德清 熊昌鉑 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 81 |
中文關鍵詞: | 背點接式太陽能電池 、電腦模擬 、效率限制 、飽和電流 、短路電流 、開路電壓 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
使用背點接式結構來製作高效率矽晶太陽能電池,此結構最大優點在於將電極都移至背面,完全除去電極遮光使短路電流極大化,因此非常有潛力可以達到矽晶太陽能電池的最高效率。而短路電流在沒有正面遮光影響後,其值變化不會太大,因此開路電壓是決定能否讓效率進一步提升的重要因素,其值由飽和電流所決定。載子SRH復合、歐傑復合,在金屬或鈍化區與矽接觸表面的復合都會決定飽和電流的大小。由於影響因素眾多若要依靠實驗一一討論所耗費的時間成本相當可觀,因此本研究重點旨在透過電腦軟體模擬建立一套完整的分析,以供未來實際製做出高效率元件。首先先計算材料本身必存在無法除去的復合機制,歐傑復合和輻射復合所貢獻的飽和電流值,而這也是當其他部分最佳化之後,元件的最終效率限制。對200 μm 1Ωcm的N型基材約20.9 fA/cm2。接著討論各種有可能對飽和電流產生影響的因素對元件的影響程度。接著再改變電極間距和電極開孔大小來決定最佳效率時所需的元件尺寸設計。模擬最後得到的最高效率25.25 %(Jsc=40.87 mA/cm2, Voc=0.7244 V, FF=85.31 %)是出現在高載子生命期(5 ms)低表面復合速率(10 cm/s)電極間距小(30 μm)且開孔小的時候(1 μm)。透過以上模擬可以知道,在材料和技術許可之下,如何利用背點接式結構製作出超過目前矽晶太陽能電池最高效率(24.7 %)的25 %以上高效率元件。
1.Armin G.Aberle, Surface passivation of crystalline silicon solar cells: A Review. Pro. Photovolt: Res. Appl. 473-487 (2000)
2.Sven Kluska, FilipGranek, MarcR¨udiger, MartinHermle, Stefan W.Glunz, Modeling and optimization study of industrial n-type high-efficiency back-contact back-junction silicon solar cells. Solar Energy Materials & Solar Cells 94 568–577 (2010).
3.M. A. Green, "Solar cells:operating principles, technology, and system
application", Prentice-Hall, (1982).
4.http://www.pveducation.org/pvcdrom/
5.http://www.neosolarpower.com/index.asp?lang=1
新日光能源科技股份有限公司
6.Jianhua Zhao, Aihua Wang and Martin A. Green, 24.5% Efficiency Silicon PERT Cells on MCZ Substrates and 24.7% Efficiency PERL Cells on FZ Substrates, Prog. Photovolt: Res. Appl. 7, 471-474 (1999).
7.E. Lohmüller, B. Thaidigsmann, M. Pospischil, U. Jäger, S. Mack, J. Specht, J. Nekarda, M. Retzlaff, A. Krieg, F. Clement, A.Wolf, D. Biro, and R. Preu, 20% Efficient passivated large-area metal wrap through solar cells on boron-doped Cz-silicon, IEEE Electron. Device Lett, VOL. 32, 1719-1921 NO. 12 (2011).
8.Fabian Kiefer, Christian Ulzhöfer, Till Brendemühl, Nils-Peter Harder, Rolf Brendel, Verena Mertens, Stefan Bordihn, Christina Peters, and Jörg W. Müller, High Efficiency n-Type Emitter-Wrap-Through Silicon Solar Cells, IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 1, NO. 1, 49-53(2011)
9.Mulligan WP, Rose DH, Cudzinovic MJ, De Ceuster, DM, McIntosh KR, Smith DD, Swanson RM. Manufacture of solar cells with 21% efficiency. Proceedings of the 19th European Photovoltaic Solar Energy Conference; 387–390 (2004).
10.Martin Hermle, Filip Granek, Oliver Schultz-Wittmann, Stefan W. Glunz, Shading Effects in Back-Junction Back-Contacted Silicon Solar Cells. 33rd IEEE Photovoltaic Specialist Conference (2008).
11.Filip Granek, HIGH-EFFICIENCY BACKCONTACT BACK-JUNCTION SILICON SOLAR CELLS. Thesis (2009).
12.D. S. Kim , V. Meemongkolkiat, A. Ebong, B. Rounsaville, V.Upadhyaya, A. Das and A. Rohatgi, 2D-modling and development of interdigitated back contact solar cells on low-cost substrates. 4th IEEE World Conference on Photovoltaic Energy Conversion(2006).
13.R. M. SWANSON, POINT-CONTACT SOLAR CELLS: MODELING AND EXPERIMENT. Solar Cells, 17 85-118 (1986).
14.C. Reichel, M. Reusch, F. Granek, M. Hermle, S. W. Glunz,
Decoupling charge carrier collection and metallization geometry of back-contacted back-junction silicon solar cells by using insulating thin films. Photovoltaic Specialists Conference (PVSC), 35th IEEE(2010).
15.Peter J. Cousins, David D. Smith, Hsin-Chiao Luan, Jane Manning, Tim D. Dennis, Ann Waldhauer, Karen E. Wilson, Gabriel Harley & William P. Mulligan, SunPower Corporation GENERATION 3: IMPROVED PERFORMANCE AT LOWER COST. Photovoltaic Specialists Conference (PVSC), 35th IEEE(2010).
16.Sinton RA, Swanson RM. Design criteria for si point-contact concentrator solar cells. IEEE Transactions on Electron Devices ED-34(10): 2116–2123 (1987).
17.K. Kotsovos, K. Misiakos, Base limited carrier transport and Performance of double junction rear point contact silicon solar cells, Solar Energy Materials & Solar Cells 77,209–227 (2003)
18.K. Kotsovos, K. Misiakos, Three-dimensional simulation of carrier transport effects in the base of rear point contact silicon solar cells.JOURNAL OF APPLIED PHYSICS VOLUME 89, NUMBER 4 ( 2001)
19.Armin G. Aberle, Stefan Glunz and Wilhelm Warta, Impact of illumination level and oxide parameters on Shockley-Read-Hall recombination at the Si-Si02 interface. J. Appl. Phys. 71 (91), (1992).
20.Armin G. Aberle, Gernot Heisergaf and Martin A. Green, Two-dimensional numerical optimization study of the rear contact geometry of high-efficiency silicon solar cells. J. Appl. Phys. 75 (10) (1994).
21.Sebastian Mack, Andreas Wolf, Christoph Brosinsky, Simon Schmeisser, Achim Kimmerle, Pierre Saint-Cast, Marc Hofmann, and Daniel Biro, Silicon surface passivation by thin thermal oxide/PECVD layer stack systems, IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 1, NO. 2, 135-145(2011).
22.M.J. Kerr, A. Cuevas, and P. Campbell, Limiting efficiency of crystalline silicon solar cells due to Coulomb-enhanced Auger recombination, Progress in Photovoltaics: Research and Applications, 11 (2), 97-104, (2003).
23.D. L. Meier and D. K. Schroder, Contact Resistance: Its Measurement and Relative Importance to Power Loss in a Solar Cell, IEEE Trans. Electron Devices, ED-31, pp. 647-653 (1984).
24. 朱則榮著 ”CMOS及相關測試元件之設計、製作與量測”民國八十五年清華大學材料科學工程所碩士論文。
25. 廖士霆著 ”矽晶太陽電池製作與特性分析”民國九十八年清華大學材料科學工程所碩士論文。