簡易檢索 / 詳目顯示

研究生: 鮑昱如
Bow, Yu-Ru
論文名稱: 原位系統藉由鎂鈍化/活化機轉連續產氫用以治療骨關節炎
In Situ Depot for Continuous Evolution of Gaseous H2 Mediated by Magnesium Passivation/Activation Cycle for Treating Osteoarthritis
指導教授: 宋信文
Sung, Hsing-Wen
口試委員: 賈維焯
陳炯東
李孟如
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 107
語文別: 中文
論文頁數: 47
中文關鍵詞: 骨關節炎氫氣醫學氣體組織發炎鎂粉
外文關鍵詞: osteoarthritis, hydrogen gas, medical gas, tissue inflammation, magnesium
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大量的ROS產生的氧化壓力所造成發炎反應涉及許多人類疾病,包括骨關節炎(OA),會破壞關節基質,加速炎症及軟骨細胞凋亡的進程。氫氣(molecular hydrogen, H2)被視為是一種新型具有選擇性的抗氧化物質,其在體內的施用安全性高且無明顯的不良反應。然而因H2在常溫常壓下於水中的溶解度低且易以氣體的形式逸散,導致生物利用率低,在發炎組織處不易累積有效的H2治療濃度。在本研究裡,我們將鎂粉包覆於疏水的聚乳酸-甘醇酸 (poly lactic-co-glycolic acid, PLGA)微球載體內,將其以肌肉注射方式注入老鼠的骨關節炎處進行一原位H2的緩釋系統,同時,經由在體液中鎂鈍化/活化的機轉,此微球載體能夠連續地產生H2,並累積有效的治療濃度以清除病灶處所產生的ROS,進而達到抑制發炎反應並可延緩骨關節炎的進程。本實驗分為三部份,在載體研發方面,此微球系統能穩定產生氫氣,同時分析鎂鈍化/活化現象以及其對環境酸鹼值的影響。在細胞實驗方面,我們證實此微球系統能夠抑制以脂多醣(lipopolysaccharides, LPS)誘導的巨噬細胞之發炎情形。在動物實驗上,微球系統降低ROS及發炎表現;並抑制軟骨細胞凋亡,維持軟骨細胞外基質(ECM)的表現量。證實此產氫微球系統能有效減輕組織發炎現象並保護軟骨,以達到治療骨關節炎的效果。


    Excess generation of reactive oxygen species is a crucial factor to trigger inflammation, which is involved in many human pathologies, including osteoarthritis. Hydrogen (H2) is known to have anti-inflammatory effects; however, the bioavailability of directly administered H2 gas is typically poor. Herein, a local delivery system that can provide a high therapeutic concentration of gaseous H2 at inflamed tissues is proposed. The delivery system comprises poly(lactic-co-glycolic acid) microparticles that contain magnesium powder (Mg@PLGA MPs). Mg@PLGA MPs that are intra-muscularly injected close to the OA knee in a mouse model can act as an in situ depot that can evolve gaseous H2 continuously, mediated by the cycle of passivation/activation of Mg in body fluids, at a concentration that exceeds its therapeutic threshold. In the first part of study, we examined particle characterization, including H2 release profile, phenomenon of passivation/activation of Mg, and their effects on environmental pH. In the second part of study, the inhibitory effects of Mg@PLGA MPs on LPS-induced RAW264.7 cell inflammation were verified. In the third part, the analytical data that are obtained in the biochemical and histological studies indicate that the proposed Mg@PLGA MPs can effectively mitigate tissue inflammation and prevent cartilage from destruction, arresting the progression of OA changes. The results demonstrated that the system is an effective modality in the treatment of OA.

    摘要 I Abstract II 目錄 III 圖目錄 V 表目錄 VII 第一章、緒論 1 1-1、活性氧化物質與發炎反應 1 1-2、骨關節炎與活性氧化物質 2 1-3、氫氣及其抗氧化性質 3 1-4、鎂與其鈍化/活化機轉 4 1-5、實驗目的 6 第二章、實驗材料和方法 8 2-1、包覆鎂粉之PLGA (Mg@PLGA MPs) 微球的製備 8 2-2、Mg@PLGA MPs之型態與粒徑分析 9 2-3、Mg@PLGA MPs包覆之計算 10 2-4、氫氣濃度量測 10 2-5、細胞培養 11 2-6、材料毒性測試 12 2-6-1、細胞存活率測試 (WST-1 assay) 12 2-6-2、LIVE/DEAD細胞存活觀察 12 2-7、抑制細胞內ROS能力之評估 13 2-8、抑制細胞內促發炎因子 (Cytokine)能力之評估 13 2-9、細胞免疫螢光染色 (Immunocytochemistry Staining, ICC) 13 2-10、關節炎小鼠模型及療程 14 2-11、動物治療效果研究 15 2-12、動物組織病理分析 15 2-13、統計分析 16 第三章、實驗結果與討論 17 3-1、鎂的鈍化/活化 17 3-2、載體物化性分析 18 3-2-1、Mg@PLGA MPs 載體最佳化 18 3-1-2、Mg@PLGA 微球之大小與型態 21 3-1-3、Mg@PLGA MPs之釋放 21 3-2、體外實驗 23 3-2-1、材料於細胞培養基中的pH 23 3-2-2、材料的毒性測試 25 3-2-3、Mg@PLGA MPs對LPS誘導細胞產生ROS的抑制效果 27 3-2-5、Mg@PLGA MPs抑制LPS誘導發炎因子之表達 31 3-3、動物實驗 33 3-3-1、Mg@PLGA MPs緩解MIA誘導之急性發炎 33 3-3-2、Mg@PLGA MPs多劑量以紓緩MIA誘導之軟骨降解 39 3-3-2-1、Mg@PLGA對金屬基質蛋白酶(MMPs)之抑制 39 3-3-2-2 Mg@PLGA MPs保護軟骨之組織切片 41 第四章、結論 43 參考文獻 44

    [1] D'Autréaux B, Toledano MB. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol. 2007; 8:813–824.
    [2] Ray, Paul D., Bo-Wen Huang, and Yoshiaki Tsuji. "Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling." Cellular signalling 24.5 (2012): 981-990.
    [3] Ellermann-Eriksen S. Macrophages and cytokines in the early defence against herpes simplex virus. Virol J. (2005); 2:59.
    [4] Birben, Esra, et al. "Oxidative stress and antioxidant defense." World Allergy Organization Journal 5.1 (2012): 9.
    [5] Dizdaroglu, Miral, and Pawel Jaruga. "Mechanisms of free radical-induced damage to DNA." Free radical research 46.4 (2012): 382-419.
    [6] Henrotin YE, Bruckner P, Pujol JP. The role of reactive oxygen species in homeostasis and degradation of cartilage. Osteoarthritis Cartilage. (2003): 11:747–55.
    [7] Blanco FJ, Valdes AM, Rego-Pérez I. Mitochondrial DNA variation and the pathogenesis of osteoarthritis phenotypes. Nat. Rev. Rheumatol. (2018): 14:327–340.
    [8] Lo, Yvonne YC, and Tony F. Cruz. "Involvement of reactive oxygen species in cytokine and growth factor induction of c-fos expression in chondrocytes." Journal of Biological Chemistry 270.20 (1995): 11727-11730.
    [9] Mitchell PG, Magna HA, Reeves LM, Lopresti-Morrow LL, Yocum SA, Rosner PJ, Geoghegan KF, Hambor JE. Cloning, expression, and type II collagenolytic activity of matrix metalloproteinase-13 from human osteoarthritic cartilage. J. Clin. Invest. (1996): 97:761–768.
    [10] Gerwin N, Hops C, Lucke A. Intraarticular drug delivery in osteoarthritis. Adv. Drug Deliv. Rev. 2006; 58:226–242.
    [11] Lepetsos, Panagiotis, and Athanasios G. Papavassiliou. "ROS/oxidative stress signaling in osteoarthritis." Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1862.4 (2016): 576-591.
    [12] Nakao, A., et al. (2009). "Therapeutic antioxidant medical gas." Journal of clinical biochemistry and nutrition 44.1: 1-13.
    [13] Abraini, J. H., et al. (1994). "Psychophysiological reactions in humans during an open sea dive to 500 m with a hydrogen-helium-oxygen mixture." Journal of Applied Physiology 76.3: 1113-1118.
    [14] Nakao, Atsunori, et al. "Therapeutic antioxidant medical gas." Journal of clinical biochemistry and nutrition 44.1 (2009): 1-13.
    [15] Ohsawa, Ikuroh, et al. "Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals." Nature medicine 13.6 (2007): 688.
    [16] Xie, Keliang, et al. "Hydrogen gas improves survival rate and organ damage in zymosan-induced generalized inflammation model." Shock 34.5 (2010): 495-501.
    [17] Fukuda K, Asoh S, Ishikawa M, Yamamoto Y, Ohsawa I, Ohta S. Inhalation of hydrogen gas suppresses hepatic injury caused by ischemia/reperfusion through reducing oxidative stress. Biochem Biophys Res Commun. 2007; 361:670–674.
    [18] Kajiyama S, Hasegawa G, Asano M, Hosoda H, Fukui M, Nakamura N, Kitawaki J, Imai S, Nakano K, Ohta M, Adachi T, Obayashi H, Yoshikawa T. Supplementation of hydrogen-rich water improves lipid and glucose metabolism in patients with type 2 diabetes or impaired glucose tolerance. Nutr Res. 2008; 28:137–43.
    [19] Itoh, T., Fujita, Y., Ito, M., Masuda, A., Ohno, K., Ichihara, M., & Ito, M. (2009). Molecular hydrogen suppresses FcεRI-mediated signal transduction and prevents degranulation of mast cells. Biochemical and biophysical research communications, 389(4), 651-656.
    [20] Hanaoka T, Kamimura N, Yokota T, Takai S, Ohta S. Molecular hydrogen protects chondrocytes from oxidative stress and indirectly alters gene expressions through reducing peroxynitrite derived from nitric oxide. Med Gas Res. 2011; 1:18.
    [21] Ohta, Shigeo. "Molecular hydrogen as a preventive and therapeutic medical gas: initiation, development and potential of hydrogen medicine." Pharmacology & therapeutics 144.1 (2014): 1-11.
    [22] Fontanari P, Badier M, Guillot C, Tomei C, Burnet H, Gardette B, Jammes Y. Changes in maximal performance of inspiratory and skeletal muscles during and after the 7.1-MPa Hydra 10 record human dive. Eur J Appl Physiol. 2000; 81:325–328.
    [23] Xin Y, Hu T, Chu P. In vitro studies of biomedical magnesium alloys in a simulated physiological environment. Acta Biomater. 2011; 7:1452–1459.
    [24] Mou, Fangzhi, et al. "Self‐Propelled Micromotors Driven by the Magnesium–Water Reaction and Their Hemolytic Properties." Angewandte Chemie 125.28 (2013): 7349-7353.
    [25] Mou, Fangzhi, et al. "Autonomous motion and temperature-controlled drug delivery of Mg/Pt-poly (N-isopropylacrylamide) Janus micromotors driven by simulated body fluid and blood plasma." ACS applied materials & interfaces 6.12 (2014): 9897-9903.
    [26] Staiger, Mark P., et al. "Magnesium and its alloys as orthopedic biomaterials: a review." Biomaterials 27.9 (2006): 1728-1734.
    [27] Tian, P., & Liu, X. (2014). "Surface modification of biodegradable magnesium and its alloys for biomedical applications." Regenerative biomaterials 2.2: 135-151.
    [28] Lorenz, C., et al. (2009). "Effect of surface pre-treatments on biocompatibility of magnesium." Acta Biomaterialia 5.7: 2783-2789.
    [29] Noviana D, Paramitha D, Ulum MF, Hermawan H. The effect of hydrogen gas evolution of magnesium implant on the postimplantation mortality of rats. J Orthop Translat. 2016; 5:9–15.
    [30] Pakulska MM, Elliott Donaghue I, Obermeyer JM, Tuladhar A, McLaughlin CK, Shendruk TN, Shoichet MS. Sci. Adv. 2016; 2:e1600519– e1600528.
    [31] Hirata, Masato, et al. "Ca2+ release in the endoplasmic reticulum of guinea pig peritoneal macrophages." The Journal of Biochemistry 94.4 (1983): 1155-1163.
    [32] Hsu, H. Y., & Wen, M. H. (2002). "Lipopolysaccharide-mediated reactive oxygen species and signal transduction in the regulation of interleukin-1 gene expression." Journal of Biological Chemistry 277.25: 22131-22139.
    [33] Bulua, A. C., et al. (2011). "Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS)." Journal of Experimental Medicine : jem-20102049.
    [34] Poltorak, A., et al. (1998)."Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene." Science 282.5396: 2085-2088.
    [35] Lu, Y. C., Yeh, W. C., & Ohashi, P. S. (2008). "LPS/TLR4 signal transduction pathway." Cytokine 42.2: 145-151.
    [36] Guingamp, Corinne, et al. "Mono‐iodoacetate‐induced experimental osteoarthritis. A dose‐response study of loss of mobility, morphology, and biochemistry." Arthritis & Rheumatology 40.9 (1997): 1670-1679.
    [37] Bowles, Robby D., et al. "In Vivo Luminescence Imaging of NF‐κB Activity and Serum Cytokine Levels Predict Pain Sensitivities in a Rodent Model of Osteoarthritis." Arthritis & rheumatology 66.3 (2014): 637-646.
    [38] Hadipour‐Jahromy, Mahsa, and Reza Mozaffari‐Kermani. "Chondroprotective effects of pomegranate juice on monoiodoacetate‐induced osteoarthritis of the knee joint of mice." Phytotherapy Research 24.2 (2010): 182-185.
    [39] Bulua, A. C., et al. (2011). "Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS)." Journal of Experimental Medicine : jem-20102049.
    [40] Kelkka, T., et al. (2012). "Enhancement of antibody-induced arthritis via Toll-like receptor 2 stimulation is regulated by granulocyte reactive oxygen species." The American journal of pathology 181.1: 141-150.
    [41] Tetlow, Lynne C., Daman J. Adlam, and David E. Woolley. "Matrix metalloproteinase and proinflammatory cytokine production by chondrocytes of human osteoarthritic cartilage: associations with degenerative changes." Arthritis & Rheumatology44.3 (2001): 585-594.

    QR CODE