研究生: |
洪子明 Hung, Tzu-Ming |
---|---|
論文名稱: |
以核磁共振之灌流、擴散與磁共振頻譜影像分析高脂飲食與CRMP-1基因缺乏老鼠之海馬迴 Magnetic resonance perfusion, diffusion, and spectroscopy in hippocampus of high fat diet and CRMP-1 gene deficiency mouse models |
指導教授: |
彭旭霞
Peng, Hsu-Hsia |
口試委員: |
周銘鐘
Chou, Ming-Chung 金亭佑 Chin, Ting-Yu 蔡炳煇 Tsai, Ping-Huei |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2022 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 126 |
中文關鍵詞: | 磁共振影像 、灌流 、擴散 、頻譜 、CRMP-1基因缺乏 、高脂飲食 、失智 |
外文關鍵詞: | Magnetic resonance imaging, Perfusion, Diffusion, Spectroscopy, CRMP-1 gene deficiency, High fat diet, Dementia |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
使用磁共振成像(magnetic resonance imaging, MRI)的研究對於了解失智症的病理機制至關重要。失智症的發生常伴隨海馬體的病變。失智症可以藉由CRMP-1基因敲除(crmp-1−/−)來先天性地造成,亦可由後天食用高脂飲食(high fat diet, HFD)來誘發。據悉,尚未有研究使用不同 MRI 技術來對先天和後天造成的失智症進行綜合的分析。因此,本研究的目的為使用核磁共振之灌流、擴散與磁共振頻譜影像來更全面地評估先天性(CRMP-1小鼠模型)與後天性(HFD小鼠模型)失智老鼠對海馬迴的影響。在對失智小鼠的海馬迴分析中,crmp-1−/−和HFD小鼠的平均擴散係數(mean diffusivity, MD)亦均增加。crmp-1−/−小鼠具有較高的非等向性指標(fractional anisotropy, FA),而 HFD小鼠則有相反趨勢。在 crmp-1−/−小鼠中,麩醯胺酸/麩胺酸 (glutamine/glutamate, Glx)和總肌酸(total creatine, t-Cr)的比率上升,而在HFD小鼠中則發現N-乙酰天冬氨酸(N-acetyl aspartate, NAA)和 t-Cr比率呈下降趨勢。綜上所述,本研究對先天性和後天性失智小鼠的海馬迴進行灌注、擴散和磁共振頻譜參數的定量。且由分析結果可觀測到此二失智症狀小鼠模型對於海馬迴造成了不同程度的改變情形。
Research applying magnetic resonance imaging (MRI) has been essential to understand the pathological mechanisms of dementia. The occurrence of dementia is often accompanied with hippocampus abnormalities. Dementia can be congenitally caused by CRMP-1 gene knockout (crmp-1−/−) or developed by consumption of high fat diet (HFD). To the best of our knowledge, the integrated analysis of dementia between congenital and developed model utilizing different MRI techniques have not been explored. The aim of this study was to estimate the influence of congenital (crmp-1−/− mouse model) and developed (HFD mouse model) dementia on the hippocampus in a more comprehensive manner by applying MR perfusion, diffusion, and spectroscopy techniques. In the hippocampus of the dementia mouse model, mean diffusivity (MD) increased in both crmp-1−/− and HFD mice. crmp-1−/− mice possessed enhanced fractional anisotropy (FA) while HFD mice demonstrated an opposite trend. The ratio of glutamine/glutamate (Glx) between total creatine (t-Cr) increased in crmp-1−/− mice while a decreased trend of N-acetyl aspartate (NAA) and t-Cr ratio was found in HFD mice. In conclusion, this study examined the perfusion, diffusion and MRS parameters on the hippocampus of congenital and developed dementia mice and suggested the different impact to the hippocampus of the two models.
1. Hoffmann, K., et al., Moderate-to-high intensity physical exercise in patients with Alzheimer’s disease: a randomized controlled trial. Journal of Alzheimer's Disease, 2016. 50(2): p. 443-453.
2. Arvanitakis, Z., R.C. Shah, and D.A. Bennett, Diagnosis and management of dementia. Jama, 2019. 322(16): p. 1589-1599.
3. Rubin, R.D., et al., The role of the hippocampus in flexible cognition and social behavior. Frontiers in human neuroscience, 2014. 8: p. 742.
4. Kaye, J.A., et al., Volume loss of the hippocampus and temporal lobe in healthy elderly persons destined to develop dementia. Neurology, 1997. 48(5): p. 1297-1304.
5. Ball, M., Neuronal loss, neurofibrillary tangles and granulovacuolar degeneration in the hippocampus with ageing and dementia. Acta neuropathologica, 1977. 37(2): p. 111-118.
6. Harvey, R., M. Skelton-Robinson, and M. Rossor, The prevalence and causes of dementia in people under the age of 65 years. Journal of Neurology, Neurosurgery & Psychiatry, 2003. 74(9): p. 1206-1209.
7. Su, K.-Y., et al., Mice deficient in collapsin response mediator protein-1 exhibit impaired long-term potentiation and impaired spatial learning and memory. Journal of Neuroscience, 2007. 27(10): p. 2513-2524.
8. Pistell, P.J., et al., Cognitive impairment following high fat diet consumption is associated with brain inflammation. Journal of neuroimmunology, 2010. 219(1-2): p. 25-32.
9. Alsop, D.C., et al., Recommended implementation of arterial spin‐labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magnetic resonance in medicine, 2015. 73(1): p. 102-116.
10. Jones, R.S. and A.D. Waldman, 1H-MRS evaluation of metabolism in Alzheimer's disease and vascular dementia. Neurological Research, 2004. 26(5): p. 488-495.
11. Zhang, Y., et al., White matter damage in frontotemporal dementia and Alzheimer's disease measured by diffusion MRI. Brain, 2009. 132(9): p. 2579-2592.
12. Jahng, G.-H., et al., Perfusion magnetic resonance imaging: a comprehensive update on principles and techniques. Korean journal of radiology, 2014. 15(5): p. 554-577.
13. Brown, W.R. and C.R. Thore, Cerebral microvascular pathology in ageing and neurodegeneration. Neuropathology and applied neurobiology, 2011. 37(1): p. 56-74.
14. Teng, H., et al., Coupling of angiogenesis and neurogenesis in cultured endothelial cells and neural progenitor cells after stroke. Journal of Cerebral Blood Flow & Metabolism, 2008. 28(4): p. 764-771.
15. Vallon, M., et al., Developmental and pathological angiogenesis in the central nervous system. Cellular and molecular life sciences, 2014. 71(18): p. 3489-3506.
16. Shin, J.H., et al., Using relative cerebral blood flow and volume to evaluate the histopathologic grade of cerebral gliomas: preliminary results. American Journal of Roentgenology, 2002. 179(3): p. 783-789.
17. Schobel, S.A., et al., Differential targeting of the CA1 subfield of the hippocampal formation by schizophrenia and related psychotic disorders. Archives of general psychiatry, 2009. 66(9): p. 938-946.
18. Wu, W. and K.L. Miller, Image formation in diffusion MRI: a review of recent technical developments. Journal of Magnetic Resonance Imaging, 2017. 46(3): p. 646-662.
19. Le Bihan, D., Looking into the functional architecture of the brain with diffusion MRI. Nature reviews neuroscience, 2003. 4(6): p. 469-480.
20. Assaf, Y. and O. Pasternak, Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. Journal of molecular neuroscience, 2008. 34(1): p. 51-61.
21. Moseley, M., Diffusion tensor imaging and aging–a review. NMR in Biomedicine: An International Journal Devoted to the Development and Application of Magnetic Resonance In Vivo, 2002. 15(7‐8): p. 553-560.
22. Sundgren, P.C., et al., Diffusion tensor imaging of the brain: review of clinical applications. Neuroradiology, 2004. 46(5): p. 339-350.
23. Alexander, A.L., et al., Diffusion tensor imaging of the brain. Neurotherapeutics, 2007. 4(3): p. 316-329.
24. Hasan, K.M., D.L. Parker, and A.L. Alexander, Comparison of gradient encoding schemes for diffusion‐tensor MRI. Journal of Magnetic Resonance Imaging: An Official Journal of the International Society for Magnetic Resonance in Medicine, 2001. 13(5): p. 769-780.
25. Arab, A., et al., Principles of diffusion kurtosis imaging and its role in early diagnosis of neurodegenerative disorders. Brain research bulletin, 2018. 139: p. 91-98.
26. Steven, A.J., J. Zhuo, and E.R. Melhem, Diffusion kurtosis imaging: an emerging technique for evaluating the microstructural environment of the brain. American journal of roentgenology, 2014. 202(1): p. W26-W33.
27. Glenn, G.R., et al., Quantitative assessment of diffusional kurtosis anisotropy. NMR in Biomedicine, 2015. 28(4): p. 448-459.
28. Soares, D. and M. Law, Magnetic resonance spectroscopy of the brain: review of metabolites and clinical applications. Clinical radiology, 2009. 64(1): p. 12-21.
29. Chang, L., et al., Magnetic resonance spectroscopy to assess neuroinflammation and neuropathic pain. Journal of Neuroimmune Pharmacology, 2013. 8(3): p. 576-593.
30. Kraguljac, N.V., et al., Increased hippocampal glutamate and volumetric deficits in unmedicated patients with schizophrenia. JAMA psychiatry, 2013. 70(12): p. 1294-1302.
31. Huang, W., et al., Brain metabolite concentration and dementia severity in Alzheimer’s disease: a 1H MRS study. Neurology, 2001. 57(4): p. 626-632.
32. Liemburg, E., et al., Prefrontal NAA and Glx levels in different stages of psychotic disorders: a 3T 1H-MRS study. Scientific reports, 2016. 6(1): p. 1-8.
33. Charrier, E., et al., Collapsin response mediator proteins (CRMPs). Molecular neurobiology, 2003. 28(1): p. 51-63.
34. Schmidt, E.F. and S.M. Strittmatter, The CRMP family of proteins and their role in Sema3A signaling. Semaphorins: Receptor and Intracellular Signaling Mechanisms, 2007: p. 1-11.
35. Bader, V., et al., Proteomic, genomic and translational approaches identify CRMP1 for a role in schizophrenia and its underlying traits. Human molecular genetics, 2012. 21(20): p. 4406-4418.
36. Akinaga, S., et al., Loss of CRMP1 and CRMP2 results in migration defects of Purkinje cells in the X lobule of the mouse cerebellum. Brain Research, 2022. 1783: p. 147846.
37. Takaya, R., et al., CRMP1 and CRMP4 are required for proper orientation of dendrites of cerebral pyramidal neurons in the developing mouse brain. Brain Research, 2017. 1655: p. 161-167.
38. Cho, K.-H., B.-H. Lei, and J.-H. Chen, A DTI study of diffusion anisotropy on CRMP-1 knockout mice.
39. Dutheil, S., et al., High-fat diet induced anxiety and anhedonia: impact on brain homeostasis and inflammation. Neuropsychopharmacology, 2016. 41(7): p. 1874-1887.
40. Freeman, L.R., et al., Damaging effects of a high-fat diet to the brain and cognition: a review of proposed mechanisms. Nutritional neuroscience, 2014. 17(6): p. 241-251.
41. Morris, M.C. and C.C. Tangney, Dietary fat composition and dementia risk. Neurobiology of aging, 2014. 35: p. S59-S64.
42. Kivipelto, M. and A. Solomon, Cholesterol as a risk factor for Alzheimer's disease–epidemiological evidence. Acta Neurologica Scandinavica, 2006. 114: p. 50-57.
43. Guadilla, I., et al., Integrative analysis of physiological responses to high fat feeding with diffusion tensor images and neurochemical profiles of the mouse brain. International journal of obesity, 2021. 45(6): p. 1203-1214.
44. Ribeiro, M., et al., High‐fat diet induces a neurometabolic state characterized by changes in glutamate and N‐acetylaspartate pools associated with early glucose intolerance: An in vivo multimodal MRI study. Journal of Magnetic Resonance Imaging, 2018. 48(3): p. 757-766.
45. Li, W., et al., Early effects of high-fat diet on neurovascular function and focal ischemic brain injury. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2013. 304(11): p. R1001-R1008.
46. Bozzali, M. and A. Cherubini, Diffusion tensor MRI to investigate dementias: a brief review. Magnetic resonance imaging, 2007. 25(6): p. 969-977.
47. Kantarci, K., 1H magnetic resonance spectroscopy in dementia. The British journal of radiology, 2007. 80(special_issue_2): p. S146-S152.
48. Théberge, J., Perfusion magnetic resonance imaging in psychiatry. Topics in Magnetic Resonance Imaging, 2008. 19(2): p. 111-130.
49. Chandra, A., G. Dervenoulas, and M. Politis, Magnetic resonance imaging in Alzheimer’s disease and mild cognitive impairment. Journal of neurology, 2019. 266(6): p. 1293-1302.
50. Zhang, Y., et al., Joint assessment of structural, perfusion, and diffusion MRI in Alzheimer's disease and frontotemporal dementia. International journal of Alzheimer’s disease, 2011. 2011.
51. Lakomkin, V.L., et al., Long-lasting hypotensive action of stable preparations of dinitrosyl-iron complexes with thiol-containing ligands in conscious normotensive and hypertensive rats. Nitric Oxide, 2007. 16(4): p. 413-418.
52. Wu, C.-R., et al., Endogenous conjugation of biomimetic dinitrosyl iron complex with protein vehicles for oral delivery of nitric oxide to brain and activation of hippocampal neurogenesis. JACS Au, 2021. 1(7): p. 998-1013.
53. Patil, V. and G. Johnson, An improved model for describing the contrast bolus in perfusion MRI. Medical physics, 2011. 38(12): p. 6380-6383.
54. Carroll, T.J., H.A. Rowley, and V.M. Haughton, Automatic calculation of the arterial input function for cerebral perfusion imaging with MR imaging. Radiology, 2003. 227(2): p. 593-600.
55. Mlynash, M., et al., Automated method for generating the arterial input function on perfusion-weighted MR imaging: validation in patients with stroke. American Journal of Neuroradiology, 2005. 26(6): p. 1479-1486.
56. Rempp, K.A., et al., Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging. Radiology, 1994. 193(3): p. 637-641.
57. Hansen, B., An introduction to kurtosis fractional anisotropy. American Journal of Neuroradiology, 2019.
58. O’Donnell, L.J. and C.-F. Westin, An introduction to diffusion tensor image analysis. Neurosurgery Clinics, 2011. 22(2): p. 185-196.
59. Lu, H., et al., Three‐dimensional characterization of non‐gaussian water diffusion in humans using diffusion kurtosis imaging. NMR in Biomedicine: An International Journal Devoted to the Development and Application of Magnetic Resonance In vivo, 2006. 19(2): p. 236-247.
60. Wu, E.X. and M.M. Cheung, MR diffusion kurtosis imaging for neural tissue characterization. NMR in Biomedicine, 2010. 23(7): p. 836-848.
61. Zhang, J., P.C. Van Zijl, and S. Mori, Three-dimensional diffusion tensor magnetic resonance microimaging of adult mouse brain and hippocampus. Neuroimage, 2002. 15(4): p. 892-901.
62. Paxinos, G. and K. Franklin, The Mouse Brain in Stereotaxic Coordinates: Compact Second Edition. Pub. 2003, Elsevier Science & Technology Books.
63. Tabesh, A., et al., Estimation of tensors and tensor‐derived measures in diffusional kurtosis imaging. Magnetic resonance in medicine, 2011. 65(3): p. 823-836.
64. Stefan, D., et al., Quantitation of magnetic resonance spectroscopy signals: the jMRUI software package. Measurement Science and Technology, 2009. 20(10): p. 104035.
65. Kanowski, M., et al., Quantitation of simulated short echo time 1H human brain spectra by LCModel and AMARES. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, 2004. 51(5): p. 904-912.
66. Calamante, F., Arterial input function in perfusion MRI: a comprehensive review. Progress in nuclear magnetic resonance spectroscopy, 2013. 74: p. 1-32.
67. Bedekar, D., T. Jensen, and K.M. Schmainda, Standardization of relative cerebral blood volume (rCBV) image maps for ease of both inter‐and intrapatient comparisons. Magnetic resonance in medicine, 2010. 64(3): p. 907-913.
68. Essig, M., et al., Perfusion MRI: the five most frequently asked technical questions. AJR. American journal of roentgenology, 2013. 200(1): p. 24.
69. Ellingson, B.M., et al., Comparison between intensity normalization techniques for dynamic susceptibility contrast (DSC)‐MRI estimates of cerebral blood volume (CBV) in human gliomas. Journal of Magnetic Resonance Imaging, 2012. 35(6): p. 1472-1477.
70. Falangola, M.F., et al., Non-Gaussian diffusion MRI assessment of brain microstructure in mild cognitive impairment and Alzheimer’s disease. Magnetic resonance imaging, 2013. 31(6): p. 840-846.
71. Wang, D., et al., Examination of hippocampal differences between Alzheimer disease, amnestic mild cognitive impairment and normal aging: diffusion kurtosis. Current Alzheimer Research, 2015. 12(1): p. 80-87.
72. Colgan, N., et al., Application of neurite orientation dispersion and density imaging (NODDI) to a tau pathology model of Alzheimer's disease. Neuroimage, 2016. 125: p. 739-744.
73. Chi, H., T.-K. Sang, and H.-Y. Chang, Tauopathy, in Cognitive Disorders. 2018, IntechOpen.
74. Grieve, S.M., et al., Cognitive aging, executive function, and fractional anisotropy: a diffusion tensor MR imaging study. American Journal of Neuroradiology, 2007. 28(2): p. 226-235.
75. Su, L., et al., Whole-brain patterns of 1H-magnetic resonance spectroscopy imaging in Alzheimer's disease and dementia with Lewy bodies. Translational psychiatry, 2016. 6(8): p. e877-e877.
76. Crescenzi, R., et al., In vivo measurement of glutamate loss is associated with synapse loss in a mouse model of tauopathy. Neuroimage, 2014. 101: p. 185-192.
77. Nilsen, L.H., et al., Glutamate metabolism is impaired in transgenic mice with tau hyperphosphorylation. Journal of Cerebral Blood Flow & Metabolism, 2013. 33(5): p. 684-691.
78. Sun, X.-Y., et al., Extrasynaptic NMDA receptor-induced tau overexpression mediates neuronal death through suppressing survival signaling ERK phosphorylation. Cell death & disease, 2016. 7(11): p. e2449-e2449.
79. Müller, M.J., et al., Functional implications of hippocampal volume and diffusivity in mild cognitive impairment. Neuroimage, 2005. 28(4): p. 1033-1042.
80. Assaf, B.A., et al., Diffusion tensor imaging of the hippocampal formation in temporal lobe epilepsy. American journal of neuroradiology, 2003. 24(9): p. 1857-1862.
81. Fellgiebel, A., et al., Ultrastructural hippocampal and white matter alterations in mild cognitive impairment: a diffusion tensor imaging study. Dementia and geriatric cognitive disorders, 2004. 18(1): p. 101-108.
82. Filippi, M., et al., Diffusion tensor magnetic resonance imaging in multiple sclerosis. Neurology, 2001. 56(3): p. 304-311.
83. den Heijer, T., et al., Structural and diffusion MRI measures of the hippocampus and memory performance. Neuroimage, 2012. 63(4): p. 1782-1789.
84. Kale, R.A., et al., Demonstration of interstitial cerebral edema with diffusion tensor MR imaging in type C hepatic encephalopathy. Hepatology, 2006. 43(4): p. 698-706.
85. Spencer, S.J., et al., High-fat diet and aging interact to produce neuroinflammation and impair hippocampal-and amygdalar-dependent memory. Neurobiology of aging, 2017. 58: p. 88-101.
86. Medzhitov, R., Origin and physiological roles of inflammation. Nature, 2008. 454(7203): p. 428-435.
87. Massalimova, A., et al., Diffusion tensor imaging reveals whole-brain microstructural changes in the P301L mouse model of tauopathy. Neurodegenerative Diseases, 2020. 20(5-6): p. 173-184.
88. Chen, J.J., M.R. Smith, and R. Frayne, The impact of partial‐volume effects in dynamic susceptibility contrast magnetic resonance perfusion imaging. Journal of Magnetic Resonance Imaging: An Official Journal of the International Society for Magnetic Resonance in Medicine, 2005. 22(3): p. 390-399.
89. Ballester, M.A.G., A.P. Zisserman, and M. Brady, Estimation of the partial volume effect in MRI. Medical image analysis, 2002. 6(4): p. 389-405.
90. Parsons, M.W., et al., Perfusion magnetic resonance imaging maps in hyperacute stroke: relative cerebral blood flow most accurately identifies tissue destined to infarct. Stroke, 2001. 32(7): p. 1581-1587.
91. Shiroishi, M.S., et al., Principles of T2*‐weighted dynamic susceptibility contrast MRI technique in brain tumor imaging. Journal of magnetic resonance imaging, 2015. 41(2): p. 296-313.