研究生: |
陳暐燁 Chen, Wei-Yei |
---|---|
論文名稱: |
透過分子動力學模擬探討高分子鏈從碟形空腔經由奈米通道噴射至奈米狹縫空間的尺度行為 Ejection of Single Flexible Polymer chains from a Disc-like Confined Space through a Nano-channel to a Nano-slit Studied by Molecular Dynamics Simulations |
指導教授: |
蕭百沂
Hsiao, Pai-Yi |
口試委員: |
張正宏
Chang, Cheng-Hung 洪在明 Hong, Tzay-Ming |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 36 |
中文關鍵詞: | 高分子噴射 、受侷限高分子鏈 、分子動力學模擬 |
外文關鍵詞: | polymer ejection, confined polymer, molecular dynamics simulation |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這研究工作中,我們使用郎之萬動力學(Langevin dynamics simulation)來進行分子動力學模擬以探討單一柔軟的高分子鏈從碟形空腔通過奈米通道噴射(eject)到另一個奈米狹縫空間。基於先前用於高分子鏈從球型空腔噴射至另一空間的理論,我們可以發展出一套用於二維空間的高分子噴射理論以預測噴射速度v及噴射時間τ的尺度行為。藉由改變高分子鏈長N和初始體積分率ϕ_0,我們可以觀察到噴射速度在ϕ_0很大時有兩個主要的尺度行為:(1)當m很大時,v ~ 〖ϕ_0〗^2 m^2/N^2.5。(2)當m很小時,v ~ m^(-1.33)。此外,噴射過程主要由壓縮階段和非壓縮階段所組成。當空腔裡的高分子鏈尺寸相當於碟型空腔尺寸時,噴射過程會從壓縮階段轉換至非壓縮階段。從模擬結果裡,我們可以得知噴射時間也有兩個主要的尺度行為:(1)當ϕ_0很大時,τ∼N^1.83 〖ϕ_0〗^(-1.33)。(2)當ϕ_0很小時,τ∼N^2.25。透過使用能量消散理論(energy dissipation)以及減縮空間效應(shrunk space effect),我們能夠更精準地去解釋這些尺度行為。
In this work, we perform molecular dynamics simulations with Langevin dynamics to investigate the ejection of single flexible polymer chains from a disc-shaped confinement to the nanoslit through a small pore. Based on the previous theories applied in the polymer ejection from a spherical cavity, the ejection theory for two-dimensional space can be developed to predict the scaling behaviors of the translocation speed v and the ejection time τ. By changing the values of the chain length N and the initial volume fraction ϕ_0, the scaling behaviors for translocation speed are v ~ 〖ϕ_0〗^2 m^2/N^2.5 for large m and v ~ m^(-1.33) for small m as ϕ_0 is large. Furthermore, the ejection process is mainly composed of the compressed stage and the uncompressed stage. When the size of the polymer chain inside the confinement is equal to the size of the confinement, the process of the ejection will be transformed from the compressed stage to the uncompressed stage. From our simulation results, the scaling behaviors for the ejection time also can be obtained:τ∼N^1.83 〖ϕ_0〗^(-1.33) for large ϕ_0 and τ∼N^2.25 for small ϕ_0. These scaling behaviors of the ejection time can be precisely explained via the theory of energy dissipation and shrunk space effect.
[1] Jia-Wei Yeh, Alessandro Taloni, Yeng-Long Chen, Chia-Fu Chou, “Entropy-driven Single Molecule Tug-Of-War of DNA at Micro-Nanofluidic Interfaces”, Nano Lett., 12, 1597, (2012).
[2] Alessandro Taloni, Jia-Wei Yeh, and Chia-Fu Chou, “Scaling Theory of Stretched Polymers in Nanoslits”, Macromolecules, 46, 7989, (2013).
[3] M. Muthukumar, “Translocation of a confined polymer through a hole”, Physical Review Letters, 86(14):3188–3191, (2001).
[4] Angelo Cacciuto and Erik Luijten, “Confinement-driven translocation of a flexible Polymer”, Physical Review Letters, 96(23), (2006).
[5] Takahiro Sakaue and Natsuhiko Yoshinaga, “Dynamics of polymer decompression: Expansion, unfolding, and ejection”, Physical Review Letters, 102(14), (2009).
[6] Hao-Chun Huang and Pai-Yi Hsiao, “Scaling Behaviors of a Polymer Ejected from a Cavity through a Small Pore”, Physical Review Letters, 123, 267801, (2019)
[7] Michael Rubinstein and Ralph H. Colby, Polymer Physics, Oxford University Press, Oxford, England, (2003), pp. 102-104 and 109
[8] P. G. de Gennes and Thomas A. Witten, “Scaling concepts in polymer physics”, Physics Today, 33(6) : 51–54, (1980)
[9] Yacov Kantor and Mehran Kardar, “Anomalous dynamics of forced translocation”, Physical Review E, 69(2), (2004).
[10] Jeffrey Chuang, Yacov Kantor, and Mehran Kardar, “Anomalous dynamics of translocation”, Physical Review E, 65(1), (2001)
[11] Takahiro Sakaue and Elie Rapha¨el, “Polymer chains in confined spaces and flow-injection problems: some remarks”, Macromolecules, 39(7):2621–2628, (2006)
[12] Hao-Chun Huang, “Ejection of Flexible Polymers from a Spherical Cavity through a Nanopore to a Semi-Space Studied by Molecular Dynamics Simulations”, National Tsing Hua University, master's thesis, (2019)
[13] HendrickW. de Haan and GaryW. Slater, “Mapping the variation of the translocation α scaling exponent with nanopore width”, Physical Review E, 81(5), (2010)
[14] M. Muthukumar, Polymer Translocation, CRC Press, (2011), pp.116-121
[15] Hong-Qing Xie and Cheng-Hung Chang, “Chemical potential formalism for polymer entropic forces”, Communication Physics, 2, 24, (2019)