簡易檢索 / 詳目顯示

研究生: 陳彥良
Yen-Liang Chen
論文名稱: 微陣列之影像掃瞄系統與群集分析之研究
The Study of Image Scanning System and Cluster Analysis of Microarray
指導教授: 許 志 木英
Ian C. Hsu
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2000
畢業學年度: 88
語文別: 中文
論文頁數: 73
中文關鍵詞: 微陣列微排玻片掃瞄系統群集分析樹狀群集主分量分析
外文關鍵詞: cDNA microarray, scanner, scan analyze, cluster analysis, hierarchical clustering, partitional clustering, K-means clustering, principal component analysis
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 將許多DNA片段固定於玻片上的微陣列(Microarray)技術,可用於檢驗核酸樣本中所含特殊DNA序列的定量分析研究。對於探討基因圖譜以及突變原因等有關基因表現的問題上,微陣列系統無論在遺傳學研究或是醫學臨床應用方面,皆是有力的工具之一。
    整個微陣列的製作與實驗過程中,需要兩部份的硬體系統,分別為點印系統(arrayer)與掃瞄系統(scanner)。將欲進行研究之mRNA在反轉錄成cDNA的過程中以螢光物質標誌,與先前點印於玻片上之已知位置且可代表個別基因的DNA片段進行配對接合(hybridization)反應。清除沒有配對成功的生物樣本後,可用掃瞄系統分析得知配對接合之情形。對我們自行架設的掃瞄系統而言,經測試並改良後其偵測螢光分子之濃度極限可達 M,相當於將螢光染劑稀釋萬倍。由實驗結果得知,此系統已接近微陣列實驗所需之掃瞄要求。

    同時可觀察上萬個基因表現的強弱,是微陣列系統的優點之一。在不同的時間點,或給予不同的實驗條件時,同時觀察大量的基因表現情形,便可得到不同時間或實驗條件時各基因表現強弱的關係圖。將表現曲線變化相近的基因排列在相鄰位置,可初步將這些基因分類,或進一步由已知作用的基因推測未知基因之功用,稱之為群集分析(cluster analysis)。本文以樹狀群集、K個平均群集進行電腦模擬,再兼取二者之優點設計出K個空間樹狀群集法。另外提出目前文獻中常用之樹狀群集可能造成的分類誤差,並以二度或三度空間之主分量分析法修正之。經由比較各種不同群集結果的方法,期盼在基因分類的判斷上能提供更準確的佐證。


    DNA microarrays, microscopic arrays of large sets of DNA sequences immobilized on slides, are powerful tools in identifying or quantifying many specific DNA sequences in complex nucleic acid samples. DNA microarrays have been used in genetic mapping studies, mutational analysis and in genome wide monitoring of gene expression, and will become standard tools in research and clinical applications.
    Making and using printed DNA microarrays requires two pieces of hardware, named arrayer and scanner. The mRNA samples turn into cDNA targets, which were labeled fluorescence dyes simultaneously by reverse transcription. The different DNA probes printed previously on slides were hybridized with the cDNA. After cleaning the non-hybridized cDNA, the scanning results were analyzed by computer. In our scanning system, the limited concentration of fluorescent detection can achieve M, and it will suffice the microarray experiments.

    One of the advantages of microarray is quantifying the thousands of gene expressions simultaneously. The relation between different moments or conditions with the strength of gene expressions will be obtained by observing these experiments. Grouping the similar variation genes together will presume the function of the unknown genes by some genes we have known, named cluster analysis. The way of calculating distance between any two genes will be decided first. The computer simulations show the results of the hierarchical clustering and the K-means partitional clustering. We then design K-hierarchical clustering by acquiring their strong points. Besides, the principal component analysis is used in these simulations to reduce the errors of the hierarchical clustering and compare with the different clustering results.

    中文摘要 Ⅰ 英文摘要 Ⅱ 誌謝 Ⅲ 目錄 Ⅳ 圖表目錄 Ⅵ 第一章 緒論 1 1-1 前言 1 1-2 微陣列系統簡介 2 第二章 原理 10 2-1 掃瞄系統介紹 10 2-1.1 二維伺服馬達控制 10 2-1.2 數據擷取卡 11 2-1.3 掃瞄之光學系統 13 2-1.4 繼電系統 17 2-2 掃瞄後之影像處理 18 2-3 群集分析 25 2-3.1 尤克利(Euclidean)距離 27 2-3.2 漢米(Hamming)距離 27 2-3.3 "Sup"距離 27 2-3.4 相關係數法 28 第三章 系統測試 31 3-1 以螢光染劑測試掃瞄系統 31 3-2 各實驗室之掃瞄系統實驗結果 38 3-3 今後改進的方向 40 第四章 電腦模擬 42 4-1 初步群集的模擬 42 4-2 樹狀群集(Hierarchical Clustering) 43 4-2.1 單一連接法(single-link) 44 4-2.2 完整連接法(complete-link) 47 4-2.3 平均連接法(average-link) 49 4-3 空間分區群集(Partitional Clustering) 51 4-3.1 K個平均群集(K-means clustering) 51 4-3.2 K個空間樹狀群集 53 4-4 主分量分析(Principal Component Analysis) 55 4-4.1 主分量分析之導證 56 4-4.2 主分量分析之模擬 58 4-4.3 比較各種群集方法在主分量分析上之表現 60 第五章 結論 66 參考文獻 68 附錄A K-S 檢定法 70 附錄B 刀口法之LABVIEW®控制程式 73

    1. P. O. Brown et al., Quantitative Monitoring of Gene Expression Pattern with a Complementary DNA Microarray, Science, 270, 467-470 (1995).
    2. F. W. Robert, W. H. Philip, Genetics, Win. C. Brown publishers, (1992), P.462.
    3. David J. Duggan, Michael Bittner, Yidong Chen, Paul Meltzer & Jeffrey M. Trent, Expression Profiling Using cDNA Microarrays, Net Genet 21, 10-14. (1999).
    4. Anorad Corporation, Software Guide for Anorad Controllers. (1996).
    5. Mike Eisen, ScanAlyze User Manual, Stanford University, (1999)
    6. Anil K. Jain and Richard C. Dubes, Algorithms for Clustering Data, Englewood Cliffs, N. J.: Prentice Hall, (1988).
    7. M.B. Eisen and P.O. Brown, DNA arrays for analysis of gene expression, Stanford University, (1999).
    8. Tidhar Dari Shalon, DNA MicroArrays: A New Tool for Genetic Analysis, Ph. D. thesis, Stanford University, (1995).
    9. B. P. James, Handbook of Biological Confocal Microscopy, Plenun Press, New York, (1995).
    10. Konan Peck, Lubert Stryer, Alexander N. Glazer, and Richard A. Mathies, Single-Molecule Fluorescence Detection: Autocorrelation Criterion and Experimental Realization with Phycoerythrin, Biophysics, Vol. 86, pp. 4087-4091, (1989).
    11. John A. Hartigan, Clustering Algorithms, New York,: Wiley, (1975).
    12. Brian Everitt, Cluster Analysis, SSRC, (1974).
    13. Helmuth Spath, Cluster Dissection and Analysis, John Wiley & Sons, (1985).
    14. I. T. Jolliffe, Principal Component Analysis, Springer-Verlag New York Berlin Heidelberg Tokyo, (1986).
    15. George H. Dunteman, Principal Component Analysis, SAGA Publication Inc., (1989).
    16. T. Kohonen, Self-Organizing Maps, 2nd Edition, Berlin; New York: Springer, (1997).
    17. Richard I. Levin, Statistics for Management, 3rd edition, Prentice-Hall, Inc., (1984).
    18. James L. Kenkel, Introductory Statistics for Management and Economics, 3rd edition, PWS-KENT publishing company, (1989).
    19. Robert J. Lipshutz, Stephen P. A. Fodor, Thomas R. Gingeras & David J. Lockhart, High Density Synthetic Oligonucleotide Arrays, Net Genet 21, 20-24. (1999).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE