研究生: |
馮祺凱 Feng,Chi-Kai |
---|---|
論文名稱: |
奈米級晶體同調性電子繞射影像之研究 Study of Nano-Particle By Coherent Electron Diffraction |
指導教授: |
陳福榮
Chen, Fu-Rong 開執中 Kai, Ji-Jung |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 87 |
中文關鍵詞: | 同調性繞射影像 、相位復原 、相位重建 、超取樣方法 |
外文關鍵詞: | Coherent Diffrction Imaging, phase retrieval, phase reconstruction, oversampling method, Difference map method |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
同調性繞射影像技術(CDI)提供了一個可行的途徑:針對非週期性及有限大小的獨立奈米結構,此技術可得到原子尺寸之解析度影像。其概念是:經過物體的出口波函數可以在光學上透過超取樣(oversampling)出口波的遠場繞射圖樣,以及多次重複性的演算法回復其波函數。實驗上,我們透過電子顯微鏡拍攝單獨奈米級氧化鎂顆粒(大小約24nm的立方體)的[001]方向電子繞射圖樣,透過JOEL 2010F場發射式穿透電子顯微鏡,操作在200KeV的加速電子電壓以及奈米級電子束的條件下,我們藉著動態邊界(support)的相位回復的演算法,得到與高解析電子顯微影像相吻合的回復結果。
The coherent diffractive imaging (CDI) technique offers a promising path toward characterization of the individual non-periodic and near-periodic isolated nanostructures at the atomic resolution. In this aberration-free microscopy, the complex exit surface wave function can be recovered from the over-sampled far-field diffraction pattern using iterative algorithms. We have recorded the image and diffraction pattern of the individual MgO nano-particle with a size of about 24nm with a crystallographic orientation [001] along the incident electron beam. The FEG-TEM (JEOL 2010F) was operated at 200keV accelerating voltage in the nano-area electron diffraction regime. For the reconstruction we utilized the phase-retrieval algorithm with dynamically defined support. The result is in agreement with the TEM image of the particle.
[1] Spence J. C. H. ed. (2003) High-Resolution Electron Microscopy. Oxford University Press Inc., New York, ISBN = 0-19-850915-4.
[2] Spence J. C. H. (1993) “On the Accurate Measurement of Structure-Factor Amplitudes and Phases by Electron Diffraction”, Acta Crystallographica Section A, 49, pp. 231-260.
[3] Kirkland E. J. ed. (1998) Advanced Computing in Electron Microscopy. Plenum Press, New York, ISBN = 0-306-45936-1.
[4] Bates R. H. T. and Fright W. R. (1983) “Composite two-dimensional phase reconstruction procedure”, Journal of Optical Society of America A, 73, pp. 358–365.
[5] Miao J., Sayre D., and Chapman H. N., (1998) "Phase retrieval from the magnitude of the Fourier transforms of non-periodic objects", Journal of Optical Society of America A, 15, pp. 1662-1669.
[6] Gerchberg R. W. and Saxton W. O., (1972) “A practical algorithm for the determination of phase from image and diffraction plane pictures”, Optik (Stuttgart), 35, pp. 237–246.
[7] Fienup J. R., (1978) “Reconstruction of an object from the modulus of its Fourier transform”, Optics Letters, 3, pp. 27–29.
[8] Fienup J. R., (1982) “Phase retrieval algorithms: a comparison”, Applied Optics, 21, pp. 2758–2769.
[9] Fienup J. R., (1986) “Phase-retrieval stagnation problems and solutions”, Journal of Optical Society of America A, 11, pp. 1987-1907.
[10] Oszlanyi G. and Suto A., (2003) “Ab initio structure solution by charge flipping”, Acta Crystallographica Section A, 60, pp. 134-141.
[11] Oszlanyi G. and Suto A., (2004) “Ab initio structure solution by charge flipping II Use of veak reflection”, Acta Crystallographica Section A, 61, pp. 147-152.
[12] Elser V., (2001) “Solution of the crystallographic phase problem by iterated projections”, Acta Crystallographica Section A, 59, pp. 201-209.
[13] Elser V., (2003). “"Phase retrieval by iterated projections”, Journal of Optical Society of America A. 20, pp. 40–55.
[14] Bauschke et al. (2002), “Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization”, Journal of Optical Society of America A, 19, pp. 1334-1344.
[15] Altman I. S., (2004) “On nanoparticle surface growth: MgO nanoparticle formation during a Mg particle combustion”, Applied Physics letters, 84, pp. 5130-5132.
[16] Hacquart R., (2005) ”Evidence for emission and transfer of energy from excited edge sites of MgO smokes by photoluminescence experiments”, Surface Science, 595, pp. 172–182.
[17] Fukui K.-I., (1999) “Observation of a new ridge structure along steps on the MgO(100) surface by non-contact atomic force microscopy”, Surface Science, 441, pp. 529–541.
[18] Zuo J. M., (2004) “Coherent Nano-Area Electron Diffraction”, Microscopy Research and Technique, 64, pp. 347–355
[19] Zuo J. M., (2000) “Electron Detection Characteristics of a Slow-Scan CCD, Camera, Imaging Plates and Film, and Electron Image Restoration”, Microscopy Research and Technique, 49, pp. 245–268.
[20] Otsu N., (1979) "A Threshold Selection Method from Gray-Level Histograms," IEEE Transactions on Systems, Man, and Cybernetics, Vol. 9, No. 1, pp. 62-66.
[21] Wu J. S. et al., (2005) “Diffractive electron imaging of nanoparticles on a substrate”, Nature Materials, 4, pp. 912-916. (Retracted)
[22] Wu J. S., Spence J. C. H., O’Keeffe M. and Groy T. L., (2004) “Application of a modified Oszlanyi and Suto ab initio charge-flipping algorithm to experimental data”, Acta Crystallographica Section A, 60, pp. 326-330.
[23] Spence J. C. H., (2004) “Coherence and sampling requirements for diffractive imaging”, Ultramicroscopy, 101, pp. 149-152.
[24] He H., (2006) “Simple constraint for phase retrieval with high efficiency”, Journal of Optical Society of America A, 23, pp. 550.
[25] Neumann W., (1988) Interpretation of the shape of electron diffraction spots from small polyhedral crystals by means of the crystal shape amplitude. Acta Crystallographica Section A, 44, pp. 890-897.
[26] Chapman H. N. et al., (2006) “High-resolution ab initio three-dimensional X-ray diffraction microscopy”, Journal of Optical Society of America A, 23, pp. 1179-1200.
[27] Pfeifer M. A. et al., (2006) “Three-dimensional mapping of a deformation field inside a nanocrystal”, Nature, 442, pp. 63-66.
[28] Dronyak Roman’s unpublished work, Department of Engineering and System Science, National Tsing Hua University.