簡易檢索 / 詳目顯示

研究生: 曾昭銘
Tsen, Chao-Ming
論文名稱: 表面增強拉曼光譜應用於蔬果殘留農藥檢測之可行性評估
Feasibility Assessment of Surface-Enhanced Raman Spectroscopy for Detection of Pesticide Residues in Fruits and Vegetables
指導教授: 莊淳宇
Chuang, Chun-Yu
口試委員: 任貽均
Jen, Yi-Jun
趙浩然
Chao, How-Ran
黃郁棻
Huang, Yu-Fen
徐慈鴻
Shyu, Tsyr-horng
游竟維
Yu, Ching-Wei
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 105
中文關鍵詞: 表面增強拉曼光譜斜向沉積技術巴拉刈二硫代胺基甲酸鹽機器學習圖像辨識
外文關鍵詞: Surface-enhanced Raman spectroscopy, Glancing angle deposition, Paraquat, Dithiocarbamates, Machine learning, Pattern recognition
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 表面增強拉曼散射(surface-enhanced Raman scattering, SERS)透過分子振動產生散射光譜指紋,能提供識別功能,極具潛力作為生物醫學、環境污染及食品安全之篩檢工具。本研究以斜向沉積技術(glancing angle deposition, GLAD)製備奈米銀顆粒(Ag nanoparticles, AgNPs)和奈米銀合金(Ag@Au)陣列結構之SERS基底,並開發偵測農作物中微量農藥殘留之基質淨化程序,應用於分析萃取液成分及確效,評估利用表面增強拉曼光譜分析農藥殘留之適用性。
    本研究針對國內農作物栽種常使用的除草劑巴拉刈(paraquat, PQ)和殺菌劑二硫代胺基甲酸鹽(dithiocarbamates, DTCs)進行偵測,由於PQ分子極性高而難以利用吸收劑淨化,DTCs受限於分子結構而難以質譜儀定性,因此無法依照標準多重農藥殘留分析方法製備檢液。PQ在許多國家普遍用來控制田園雜草,產生自由基造成細胞組織不可逆傷害及器官壞死,國內於2020年禁止PQ使用,但礙於公告檢驗方法流程繁瑣且需LC/MSMS進行精確定量,不利田間監測和機動查緝。因此,本研究使用歐盟QuPPe萃取方式,建立AgNPs-SERS基底快速篩檢紅豆中PQ殘留之分析最適條件,其偵測PQ極限達0.8 ng/g。
    此外,DTCs是國內使用量大且用途廣泛的殺菌劑農藥,其毒性差異由分子結構決定,大致上可歸類為三種分子結構dimethyldithiocarbamates (DMDCs)、ethylene-bis-dithiocarbamates (EBDCs)及propylene-bis-dithiocarbamates (PBDCs),其中EBDCs和PBDCs的代謝物具有不同毒性。現行國內外公告DTCs檢驗方法為經由還原劑測定二硫化碳總量,易受作物內生性硫化物干擾造成偽陽性且無法鑑別DTC種類。對此,本研究開發Ag@Au-SERS基底檢測蔬果基質中DTCs種類和殘留量,其偵測極限達0.05 μg/g,對於內源性硫化物含量高的作物(如花椰菜和白蘿蔔),無基質干擾效應。應用低濃度DTCs殘留的萵苣樣品所作的篩檢效能統計,靈敏度達93.3%以上,偽陰性低於6.7%。進一步藉由基線校正圖譜,透過機器學習訓練辨識模組,採用單一層級支持向量演算函式(One Calss SVM),強化對偽陰性結果的辨識。
    本論文研究成功利用奈米結構SERS基底建立可快速偵測作物基質中PQ和DTCs殘留之分析方法。此分析方法具有操作簡單、排碳量低、安全性高、無基質干擾等優點,可與現行公告檢驗方法互補,提供快速篩檢或自主管理之使用。


    Surface-enhanced Raman scattering (SERS) generates scattering spectral fingerprints through molecular vibrations, which can provide identification functions and have great potential as a screening tool for biomedicine, environmental pollution and food safety. This study developed SERS substrates with the array structure of Ag nanoparticles (AgNPs) and Ag@Au by glancing angle deposition (GLAD) and a substrate purification procedure for detecting trace pesticide residues in crops, and evaluated the validity of SERS performance for the analysis of pesticide residues.
    In this study, the herbicide paraquat (PQ) and the fungicide dithiocarbamates (DTCs) commonly applied in domestic crop cultivation. The standard multiplex pesticide residue analysis methods can not be used because the high polarity of PQ molecules is difficult to purify by absorbents, and the molecular structure of DTCs is difficult to characterize by mass spectrometry. PQ is commonly used in many countries to control weeds in fields, which generate free radicals that can cause irreversible cell tissue damage and organ necrosis. Thus, this study established the optimal conditions for the rapid screening of PQ residues in red beans using the EU QuPPe extraction method with AgNPs-SERS substrate, and the detection limit of PQ reached 0.8 ng/g.
    In addition, DTCs are widely used fungicidal pesticides, and their toxicity differences are determined by their molecular structures, which can be roughly divided into three types of molecular structures: dimethyldithiocarbamates (DMDCs), ethylene-bis-dithiocarbamates (EBDCs) and propylene-bis-dithiocarbamates (PBDCs). The metabolites of EBDCs and PBDCs have different toxicity. At present, the determination method of DTCs are based on the determination of total carbon disulfide by reducing agents, which are susceptible to the interference of endogenous sulfides in crops, resulting in false positives and unidentifiable DTC species. This study developed Ag@Au-SERS substrates to detect DTCs species and residues in vegetable and fruit matrices with a detection limit of 0.05 μg/g for crops with high endogenous sulfide content (e.g., cauliflower), and there was no matrix interference effect.
    This study successfully developed a rapid detection method for PQ and DTCs residues in crop matrices using nanostructured SERS substrates. This analytical method has the advantages of simple operation, low carbon emission, high safety, and no matrix interference, which can be complementary to the current announcementinspection assays to provide rapid screening or self-management.

    謝誌 i 摘要 ii Abstract iii 目錄 iv 圖目錄 viii 表目錄 x 第一章 前言 1 第二章 文獻回顧 3 2.1 農藥的使用與管理 3 2.1.1 農藥的種類及用量 5 2.1.2 農藥的殘留容許量 7 2.1.3 農藥殘留監測情形 8 2.2 農藥殘留的檢測方法 11 2.2.1 多重殘留分析的前處理 11 2.2.2 多重分析使用之層析質譜儀 11 2.2.3 單一農藥殘留之檢驗技術 14 2.3 單一農藥殘留檢驗 15 2.3.1 巴拉刈檢測之重要性 15 2.3.2 現行巴拉刈檢測方法 16 2.3.3 二硫代胺基甲酸鹽檢測之重要性 17 2.3.4 現行二硫代胺基甲酸鹽檢測方法 21 2.4 快速檢測分析技術 22 2.4.1 生物化學法 22 2.4.2.免疫分析法 23 2.4.3 生物感測器 24 2.4.4 電化學分析 26 2.4.5 光譜分析法 29 2.5 表面增強拉曼散射(SERS) 35 2.5.1 SERS在農藥檢測之應用 37 2.5.2 SERS檢測巴拉刈及DTCs 38 2.5.3 SERS基底材質及製備技術 39 2.5.4 SERS光譜圖之基線校正 41 2.5.5機器學習辨識SERS圖譜 44 第三章 研究目的 47 第四章 方法 48 4.1 SERS快速檢測紅豆中巴拉刈殘留 48 4.1.1材料與設備 48 4.1.2 配製PQ標準溶液 48 4.1.3製備PQ殘留之紅豆樣品 49 4.1.4 製備紅豆樣品之PQ濃度分析 49 4.1.5 評估紅豆表面的PQ萃取回收率 49 4.1.6 質譜定量PQ 50 4.1.7 SERS量測PQ 52 4.2 SERS快速檢測蔬果中二硫代胺基甲酸鹽類(DTCs)殘留 53 4.2.1 材料與設備 53 4.2.2 雙合金基底的製備 54 4.2.3 製備DTCs殘留樣本 54 4.2.4 評估葉菜表面的DTCs萃取回收率 55 4.2.5二硫化碳含量分析 56 4.2.6定性篩檢效能計算 57 4.2.7圖譜辨識模型訓練 59 第五章 結果 60 5.1 SERS檢測紅豆中巴拉刈殘留 60 5.1.1 PQ特徵位移及偵測極限 60 5.1.2 PQ在基質的定量極限 61 5.1.3 PQ之基質匹配檢量線 62 5.1.4 PQ在製備樣品的殘留濃度 63 5.1.5 PQ表面萃取效率之評估 64 5.1.6 PQ萃取回收率和變異性 66 5.2 SERS檢測蔬果中二硫代胺基甲酸鹽類殘留 67 5.2.1 SERS基板的顯微結構 67 5.2.2 DTCs之SERS特徵位移 68 5.2.3 DTCs特徵峰強度之影響因子 70 5.2.4 DTCs檢測靈敏度和萃取效率 72 5.2.5 基質添加之量測穩定性 74 5.2.6 定性篩檢方法性能統計 75 5.2.7 分類演算函式的辨識率 79 第六章 討論 80 6.1 SERS快速檢測紅豆中巴拉刈殘留 80 6.1.1 適當的基底膜厚度顯著提高檢測感度 80 6.1.2 可定量PQ濃度的SERS峰值對數關係 81 6.1.3 常溫下以酸性溶液提高PQ萃取效率 81 6.1.4 應用基質淨化程序有效降低定量極限 83 6.1.5 驗證篩檢方法的高精密度和高準確性 83 6.2 SERS快速檢測蔬果中二硫代胺基甲酸鹽類殘留 84 6.2.1 雙合金鍍膜基底增強DTCs訊號強度 84 6.2.2 可用以定性DTCs結構的特徵峰訊號 84 6.2.3 氯離子的存在顯著增強DTCs的訊號 86 6.2.4 篩檢定量極限優於常規分析檢出限量 87 6.2.5 驗證篩檢方法的高重複性和高準確度 88 6.2.6 結合圖像辨識可降低偽陰結果的誤判 89 第七章 結論 90 參考文獻 91

    方麗萍, 非選擇性除草劑在臺灣一甲子. 2017.
    2. FAO, Pesticides use 1990-2018.pdf. 2020.
    3. Sharma, A., et al., Worldwide pesticide usage and its impacts on ecosystem. SN Applied Sciences, 2019. 1(11): p. 1446.
    4. 陳枻廷, 張羽萱, and 余祁暐, 全球植物保護劑產業發展現況與管理制度分析. 農業生技產業季刊, 2018(55): p. 43-55.
    5. European Food Safety, A., Review of the existing maximum residue levels for glyphosate according to Article 12 of Regulation (EC) No 396/2005. EFSA J, 2018. 16(5): p. e05263.
    6. Copplestone, J.F., The development of the WHO Recommended Classification of Pesticides by Hazard. Bull World Health Organ, 1988. 66(5): p. 545-51.
    7. World Health, O. and S. International Programme on Chemical, The WHO recommended classification of pesticides by hazard and guidelines to classification 2009. 2010, World Health Organization: Geneva.
    8. Tsagkaris, A.S., J. Pulkrabova, and J. Hajslova, Optical Screening Methods for Pesticide Residue Detection in Food Matrices: Advances and Emerging Analytical Trends. Foods, 2021. 10(1).
    9. Zhang, W., Global pesticide use: Profile, trend, cost / benefit and more. 2018. 8: p. 1-27.
    10. 8 - Pesticide Residue in Foods, in Handbook of Pollution Prevention and Cleaner Production: Best Practices in the Agrochemical Industry, N.P. Cheremisinoff and P.E. Rosenfeld, Editors. 2011, William Andrew Publishing: Oxford. p. 269-279.
    11. Rajabi, M., Food Quality Protection Act, in Encyclopedia of Toxicology (Third Edition), P. Wexler, Editor. 2014, Academic Press: Oxford. p. 637-638.
    12. Nakagaki, T., Codex MRL on pesticide residues. Journal of the Food Hygienic Society of Japan, 1998. 39(6): p. J423-J424.
    13. Choia, J.W. and C. Yue, Investigating the impact of maximum residue limit standards on the vegetable trade in Japan. International Food and Agribusiness Management Review, 2017. 20(1): p. 159-173.
    14. Chang, J.M., T.H. Chen, and T.J. Fang, Pesticide residue monitoring in marketed fresh vegetables and fruits in central Taiwan (1999-2004) and an introduction to the HACCP system. Journal of Food and Drug Analysis, 2005. 13(4): p. 368-376.
    15. 陳枻廷, 全球農用資材及殘留檢驗市場趨勢分析. 農業生技產業季刊, 2020(61): p. 24-30.
    16. Pesticide Monitoring Program: Design Assessment. EFSA Journal, 2015. 13(2).
    17. Authority, E.F.S., The 2014 European Union Report on Pesticide Residues in Food. EFSA Journal, 2016. 14(10): p. e04611.
    18. Authority, E.F.S., The 2015 European Union report on pesticide residues in food. EFSA Journal, 2017. 15(4): p. e04791.
    19. Authority, E.F.S., The 2016 European Union report on pesticide residues in food. EFSA Journal, 2018. 16(7): p. e05348.
    20. Authority, E.F.S., The 2017 European Union report on pesticide residues in food. EFSA Journal, 2019. 17(6): p. e05743.
    21. Authority, E.F.S., P. Medina-Pastor, and G. Triacchini, The 2018 European Union report on pesticide residues in food. EFSA Journal, 2020. 18(4): p. e06057.
    22. 高靜華,曾佳琳,鄭允,曾坤木, 農試所2015農藥快檢生化法. 農業試驗所技術服務季刊, 2015. 102: p. 23-29.
    23. Chou, W.C., et al., Prioritization of pesticides in crops with a semi-quantitative risk ranking method for Taiwan postmarket monitoring program. Journal of Food and Drug Analysis, 2019. 27(1): p. 347-354.
    24. Kowalski, J., et al., Analysis of pesticides in dietary supplements: Evaluation of QuEChERS, Cartridge SPE clean-up, and gas chromatography time-of-flight mass spectrometry. Agro Food Industry Hi-Tech, 2011. 22(5): p. 8-11.
    25. Abdulra'uf, L.B., W.A. Hammed, and G.H. Tan, SPME Fibers for the Analysis of Pesticide Residues in Fruits and Vegetables: A Review. Critical Reviews in Analytical Chemistry, 2012. 42(2): p. 152-161.
    26. Farooq, S., et al., Molecularly imprinted polymers' application in pesticide residue detection. Analyst, 2018. 143(17): p. 3971-3989.
    27. Poustka, J., K. Holadova, and J. Hajsova, Application of supercritical fluid extraction in multi-residue pesticide analysis of plant matrices. European Food Research and Technology, 2003. 216(1): p. 68-74.
    28. Barriada-Pereira, M., et al., Comparison of pressurized liquid extraction and microwave assisted extraction for the determination of organochlorine pesticides in vegetables. Talanta, 2007. 71(3): p. 1345-1351.
    29. Wang, R.Y., et al., IONIC LIQUID-BASED MICROWAVE-ASSISTED EXTRACTION OF ORGANOCHLORINE PESTICIDES FROM SOIL. Journal of Liquid Chromatography & Related Technologies, 2013. 36(6): p. 687-699.
    30. Wiilkowska, A. and M. Biziuk, Determination of pesticide residues in food matrices using the QuEChERS methodology. Food Chemistry, 2011. 125(3): p. 803-812.
    31. Anastassiades, M., et al., Fast and easy multiresidue method employing acetonitrile extraction/partitioning and "dispersive solid-phase extraction" for the determination of pesticide residues in produce. Journal of Aoac International, 2003. 86(2): p. 412-431.
    32. Pico, Y., et al., SOLID-PHASE TECHNIQUES IN THE EXTRACTION OF PESTICIDES AND RELATED-COMPOUNDS FROM FOODS AND SOILS. Journal of Microcolumn Separations, 1994. 6(4): p. 331-359.
    33. Barrionuevo, W.R. and F.M. Lancas, Comparison of liquid-liquid extraction (LLE), solid-phase extraction (SPE), and solid-phase microextraction (SPME) for pyrethroid pesticides analysis from enriched river water. Bulletin of Environmental Contamination and Toxicology, 2002. 69(1): p. 123-128.
    34. Satoh, M., Solid phase extraction in pesticides residue analysis. Journal of Pesticide Science, 2002. 27(4): p. 444-446.
    35. Chuang, W.-C., et al., FaPEx® multipesticide residues extraction kit for minimizing sample preparation time in agricultural produce. Journal of AOAC International, 2019. 102(6): p. 1864-1876.
    36. Pico, Y., et al., ONLINE TRACE-LEVEL ENRICHMENT GAS-CHROMATOGRAPHY OF TRIAZINE HERBICIDES, ORGANOPHOSPHORUS PESTICIDES, AND ORGANOSULFUR COMPOUNDS FROM DRINKING AND SURFACE WATERS. Analyst, 1994. 119(9): p. 2025-2031.
    37. Rahman, M.M., et al., Quick, easy, cheap, effective, rugged, and safe sample preparation approach for pesticide residue analysis using traditional detectors in chromatography: A review. Journal of Separation Science, 2017. 40(1): p. 203-212.
    38. Donkor, A., et al., Validation of QuEChERS method for the determination of 36 pesticide residues in fruits and vegetables from Ghana, using gas chromatography with electron capture and pulsed flame photometric detectors. Journal of Environmental Science and Health Part B-Pesticides Food Contaminants and Agricultural Wastes, 2015. 50(8): p. 560-570.
    39. McLeod, H.A., et al., GAS-LIQUID-CHROMATOGRAPHY SYSTEM WITH FLAME IONIZATION, PHOSPHORUS, SULFUR, NITROGEN, AND ELECTRON-CAPTURE DETECTORS OPERATING SIMULTANEOUSLY FOR PESTICIDE-RESIDUE ANALYSIS. Analytical Chemistry, 1975. 47(4): p. 674-679.
    40. Bruner, F., A. Berloni, and P. Palma, Determination of acidic chlorinated pesticides in water: Comparison of official EPA method 515.1 and liquid-solid extraction HPLC/UV and HPLC/PBMS analyses. Chromatographia, 1996. 43(5-6): p. 279-284.
    41. Jimenez, B., et al., Evaluation by HPLC-UV of polar pesticides in rice fields. Bulletin of Environmental Contamination and Toxicology, 1999. 63(6): p. 813-820.
    42. Kobayashi, H., Development of Residue Analysis for Pesticides by LC/MS and LC/MS/MS Methods. Bunseki Kagaku, 2009. 58(12): p. 985-997.
    43. Gomez-Ramos, M.M., et al., Liquid chromatography-high-resolution mass spectrometry for pesticide residue analysis in fruit and vegetables: Screening and quantitative studies. Journal of Chromatography A, 2013. 1287: p. 24-37.
    44. Hernandez-Mesa, M. and D. Moreno-Gonzalez, Current Role of Mass Spectrometry in the Determination of Pesticide Residues in Food. Separations, 2022. 9(6): p. 29.
    45. Pico, Y., et al., Pesticide residue determination in fruit and vegetables by liquid chromatography-mass spectrometry. Journal of Chromatography A, 2000. 882(1-2): p. 153-173.
    46. Stachniuk, A. and E. Fornal, Liquid Chromatography-Mass Spectrometry in the Analysis of Pesticide Residues in Food. Food Analytical Methods, 2016. 9(6): p. 1654-1665.
    47. Hamzawy, A.H. and O.E. Hussein, Validation of short run time GC-EI (+) MS/MS method for pesticide residues determination in dry Hibiscus syriacus L. via application of d-MRM and end-point backflush quantification techniques. International Journal of Environmental Analytical Chemistry, 2021: p. 14.
    48. 沈盟倪, et al., 2014-2019年臺灣申請學名藥農藥之概況分析. 臺灣農藥科學, 2020(8): p. 101-111.
    49. 方麗萍, 回顧台灣農藥市場20年(2000-2020). 中華民國雜草學會會刊, 2021. 42(1): p. 1-5.
    50. Lozano, A., et al., Pesticide Residue Analysis in Fruit- and Vegetable-Based Baby Foods Using GC-Orbitrap MS. Journal of Aoac International, 2018. 101(2): p. 374-382.
    51. Nannou, C.I., V.I. Boti, and T.A. Albanis, Trace analysis of pesticide residues in sediments using liquid chromatography-high-resolution Orbitrap mass spectrometry. Analytical and Bioanalytical Chemistry, 2018. 410(7): p. 1977-1989.
    52. Bourmaud, A., S. Gallien, and B. Domon, Parallel reaction monitoring using quadrupole-Orbitrap mass spectrometer: Principle and applications. Proteomics, 2016. 16(15-16): p. 2146-2159.
    53. Manning, A.J., et al., Simple strategies to enhance discovery of acetylation post-translational modifications by quadrupole-orbitrap LC-MS/MS. Biochimica Et Biophysica Acta-Proteins and Proteomics, 2018. 1866(2): p. 224-229.
    54. Pang, G.F., et al., Screening of 485 Pesticide Residues in Fruits and Vegetables by Liquid Chromatography-Quadrupole-Time-of-Flight Mass Spectrometry Based on TOF Accurate Mass Database and QTOF Spectrum Library. Journal of Aoac International, 2018. 101(4): p. 1156-1182.
    55. Lopez, S.H., et al., Post-acquisition data processing for the screening of transformation products of different organic contaminants. Two-year monitoring of river water using LC-ESI-QTOF-MS and GCxGC-EI-TOF-MS. Environmental Science and Pollution Research, 2014. 21(21): p. 12583-12604.
    56. 林韶凱, 徐., 農產品中殘留農藥快速萃取技術. 農政與農情, 2016. 289.
    57. Sharma, A., et al., Global trends in pesticides: A looming threat and viable alternatives. Ecotoxicol Environ Saf, 2020. 201: p. 110812.
    58. Maestroni, B., et al., Optimization and validation of a single method for the determination of pesticide residues in Peumus boldus Molina leaves using GC-MSD, GC-MS/MS and LC-MS/MS. Journal of Applied Research on Medicinal and Aromatic Plants, 2020. 18: p. 9.
    59. Mol, H.G.J., P. Zomer, and M. de Koning, Qualitative aspects and validation of a screening method for pesticides in vegetables and fruits based on liquid chromatography coupled to full scan high resolution (Orbitrap) mass spectrometry. Analytical and Bioanalytical Chemistry, 2012. 403(10): p. 2891-2908.
    60. Viera, M.S., et al., Multiresidue determination of pesticides in crop plants by the quick, easy, cheap, effective, rugged, and safe method and ultra-high-performance liquid chromatography tandem mass spectrometry using a calibration based on a single level standard addition in the sample. Journal of Chromatography A, 2017. 1526: p. 119-127.
    61. 游蕎瑀, et al., 以SweEt流程開發食品中農藥殘留檢驗方法. 食品藥物研究年報, 2021(12): p. 8-22.
    62. 衛生福利部食品藥物管理署, 食品中殘留農藥檢驗方法-多重殘留分析方法(六)(TFDAP0007.01).pdf. 2019.
    63. 衛生福利部食品藥物管理署, 食品中殘留農藥檢驗方法-極性農藥及其代謝物多重殘留分析方法(TFDAP0006.00). 2017.
    64. 方麗萍, 非選擇性除草劑在台灣深耕半世紀. 中華民國雜草學會會刊, 2015. 36(1): p. 77-92.
    65. 方麗萍, 台灣除草劑市場2008-2012. 中華民國雜草學會會刊, 2013. 34(1): p. 59-68.
    66. Maggi, F., et al., PEST-CHEMGRIDS, global gridded maps of the top 20 crop-specific pesticide application rates from 2015 to 2025. Sci Data, 2019. 6(1): p. 170.
    67. Halim, N., et al., Determination of Paraquat Residues in Palm Oil by High-Performance Liquid Chromatography with UV and Tandem Mass Spectrometry. European Journal of Lipid Science and Technology, 2019. 121(8): p. 7.
    68. Chien, W.C., et al., Trends in poisoning hospitalization and mortality in Taiwan, 1999-2008: a retrospective analysis. Bmc Public Health, 2011. 11: p. 8.
    69. Chang, S.S., et al., The early impact of paraquat ban on suicide in Taiwan. Clinical Toxicology, 2022. 60(1): p. 131-135.
    70. Taguchi, V.Y., et al., Determination of diquat and paraquat in water by liquid chromatography (electrospray ionization) mass spectrometry. Journal of the American Society for Mass Spectrometry, 1998. 9(8): p. 830-839.
    71. Wang, K.C., et al., Simultaneous detection and quantitation of highly water-soluble herbicides in serum using ion-pair liquid chromatography-tandem mass spectrometry. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 2008. 876(2): p. 211-218.
    72. Carneiro, M.C., L. Puignou, and M.T. Galceran, Comparison of capillary electrophoresis and reversed-phase ion-pair high-performance liquid chromatography for the determination of paraquat, diquat and difenzoquat. Journal of Chromatography A, 1994. 669(1): p. 217-224.
    73. U.S. Environmental Protection Agency, E.M.a.S.L., <epa-549.2.pdf>. 1997.
    74. Hao, C., et al., Optimized liquid chromatography tandem mass spectrometry approach for the determination of diquat and paraquat herbicides. J Chromatogr A, 2013. 1304: p. 169-76.
    75. Chuntib, P. and J. Jakmunee, Simple flow injection colorimetric system for determination of paraquat in natural water. Talanta, 2015. 144: p. 432-438.
    76. Siangproh, W., et al., Novel colorimetric assay for paraquat detection on-silica bead using negatively charged silver nanoparticles. Talanta, 2017. 174: p. 448-453.
    77. Guijarro, E.C., P. Yanezsedeno, and L.M.P. Diez, DETERMINATION OF PARAQUAT BY FLOW-INJECTION SPECTROPHOTOMETRY. Analytica Chimica Acta, 1987. 199: p. 203-208.
    78. Startin, J.R., et al., Determination of residues of the plant growth regulator chlormequat in pears by ion-exchange high performance liquid chromatography-electrospray mass spectrometry. Analyst, 1999. 124(7): p. 1011-1015.
    79. M. Anastassiades, D.I.K., D. Mack, I. Sigalova, D. Roux and D. Fügel, <meth_QuPPe_Version6.pdf>. 2011.
    80. Aramendia, M.A., et al., Determination of diquat and paraquat in olive oil by ion-pair liquid chromatography-electro spray ionization mass spectrometry (MRM). Food Chemistry, 2006. 97(1): p. 181-188.
    81. Riediker, S., et al., Determination of chlormequat and mepiquat in pear, tomato, and wheat flour using on-line solid-phase extraction (Prospekt) coupled with liquid chromatography-electrospray ionization tandem mass spectrometry. J Chromatogr A, 2002. 966(1-2): p. 15-23.
    82. Vahl, M., A. Graven, and R.K. Juhler, Analysis of Chlormequat residues in grain using liquid chromatography-mass spectrometry (LC-MS/MS). Fresenius' Journal of Analytical Chemistry, 1998. 361(8): p. 817-820.
    83. Esparza, X., E. Moyano, and M.T. Galceran, Analysis of chlormequat and mepiquat by hydrophilic interaction chromatography coupled to tandem mass spectrometry in food samples. Journal of Chromatography A, 2009. 1216(20): p. 4402-4406.
    84. Evans, C.S., et al., Improved sensitivity in detection of chlormequat by liquid chromatography-mass spectrometry. J Chromatogr A, 2000. 897(1-2): p. 399-404.
    85. Peeters, M.-C., et al., Simple ion chromatographic method for the determination of chlormequat residues in pears. Journal of Chromatography A, 2001. 920(1): p. 255-259.
    86. Grey, L., B. Nguyen, and P. Yang, Liquid chromatography-electrospray ionization isotope dilution mass spectrometry analysis of paraquat and diquat using conventional and multilayer solid-phase extraction cartridges. J Chromatogr A, 2002. 958(1-2): p. 25-33.
    87. Pateiro-Moure, M., et al., Determination of quaternary ammonium herbicides in soils: Comparison of digestion, shaking and microwave-assisted extractions. Journal of Chromatography A, 2008. 1196-1197: p. 110-116.
    88. Grey, L., B. Nguyen, and P. Yang, Liquid chromatography-electrospray ionization isotope dilution mass spectrometry analysis of paraquat and diquat using conventional and multilayer solid-phase extraction cartridges. Journal of Chromatography A, 2002. 958(1-2): p. 25-33.
    89. Kolberg, D.I.S., et al., Development and independent laboratory validation of a simple method for the determination of paraquat and diquat in potato, cereals and pulses. Analytical and Bioanalytical Chemistry, 2012. 404(8): p. 2465-2474.
    90. Trent, T. and R. Jordan, Determination of Highly Polar Pesticide Residues in Food of Plant Origin, by an Automated QuPPe Solution. Lc Gc North America, 2015: p. 23-23.
    91. Kaczynski, P., Clean-up and matrix effect in LC-MS/MS analysis of food of plant origin for high polar herbicides. Food Chemistry, 2017. 230: p. 524-531.
    92. Lara, F.J., et al., Evaluation of direct analysis in real time for the determination of highly polar pesticides in lettuce and celery using modified Quick Polar Pesticides Extraction method. Journal of Chromatography A, 2017. 1496: p. 37-44.
    93. Norskov, N.P., S.K. Jensen, and M.T. Sorensen, Robust and highly sensitive micro liquid chromatography-tandem mass spectrometry method for analyses of polar pesticides (glyphosate, aminomethylphosfonic acid, N-acetyl glyphosate and N-acetyl aminomethylphosfonic acid) in multiple biological matrices. Journal of Chromatography A, 2019. 1605: p. 10.
    94. Raynie, D.E., Quick Polar Pesticides (QuPPe): Learning From and Expanding Upon Others. Lc Gc Europe, 2022. 35(3): p. 103-105.
    95. Stadler, K., et al., Systematic review of human biomonitoring studies of ethylenethiourea, a urinary biomarker for exposure to dithiocarbamate fungicides. Environmental Pollution, 2022. 292: p. 12.
    96. Kwon, D., et al., Toxicological evaluation of dithiocarbamate fungicide mancozeb on the endocrine functions in male rats. Molecular & Cellular Toxicology, 2018. 14(1): p. 105-112.
    97. Vettorazzi, G., et al., International safety assessment of pesticides: Dithiocarbamate pesticides, ETU, and PTU - A review and update. Teratogenesis Carcinogenesis and Mutagenesis, 1995. 15(6): p. 313-337.
    98. Keppel, G.E., Collaborative Study of the Determination of Dithiocarbamate Residues by a Modified Carbon Disulfide Evolution Method. Journal of Association of Official Analytical Chemists, 2020. 54(3): p. 528-532.
    99. Caldas, E.D., et al., Determination of dithiocarbamate fungicide residues in food by a spectrophotometric method using a vertical disulfide reaction system. Journal of Agricultural and Food Chemistry, 2001. 49(10): p. 4521-4525.
    100. Friedrichs, K., H.D. Winkeler, and P. Gerhards, DETERMINATION OF DITHIOCARBAMATE RESIDUES IN FOODSTUFF BY HEADSPACE GAS-CHROMATOGRAPHY AND FLAME PHOTOMETRIC DETECTION. Zeitschrift Fur Lebensmittel-Untersuchung Und-Forschung, 1995. 201(1): p. 69-73.
    101. Fonseca, E., J. Matarrita, and S. Briceno, Validation of a GC-MS method for the determination of dithiocarbamate fungicide residues in brassicales. Abstracts of Papers of the American Chemical Society, 2014. 248: p. 1.
    102. Silva, R.C., et al., Determination of tetramethylthiuram disulfide (thiram) for residual analysis in food using spectrophotometry coupled with a solid-phase reactor (SPR) in a flow system. International Journal of Environmental Analytical Chemistry, 2014. 94(9): p. 874-883.
    103. Crnogorac, G. and W. Schwack, Residue analysis of dithiocarbamate fungicides. Trac-Trends in Analytical Chemistry, 2009. 28(1): p. 40-50.
    104. Besombes, J.L., et al., A BIOSENSOR AS WARNING DEVICE FOR THE DETECTION OF CYANIDE, CHLOROPHENOLS, ATRAZINE AND CARBAMATE PESTICIDES. Analytica Chimica Acta, 1995. 311(3): p. 255-263.
    105. Lima, R.S., et al., Enzymatic biosensor for the detection of dithiocarbamate fungicides. Kinetic study of aldehyde dehydrogenase enzyme and biosensor optimization. Quimica Nova, 2007. 30(1): p. 9-17.
    106. Nistor, C. and J. Emneus, Bioanalytical tools for monitoring polar pollutants. Waste Management, 1999. 19(2): p. 147-170.
    107. Perz, R.C., H. van Lishaut, and W. Schwack, CS2 blinds in Brassica crops: False positive results in the dithiocarbamate residue analysis by the acid digestion method. Journal of Agricultural and Food Chemistry, 2000. 48(3): p. 792-796.
    108. 江明耀, 高., 周桃美, 黃毓斌 農產品自主把關-生化檢驗體系簡介. 農業害蟲管理暨食安把關研發成果研討會專刊.
    109. 邱紀松, 高靜華, and 鄭允, Rapid Bioassay of Pesticide Residues (RBPR) on Fruits and Vegetables. 中華農業研究, 1991. 40(2): p. 188-203.
    110. Kaufman, B.M. and M. Clower, Immunoassay of pesticides: An update. Journal of Aoac International, 1995. 78(4): p. 1079-1090.
    111. Jimenez, A.M. and M.J. Navas, Chemiluminescent methods in agrochemical analysis. Critical Reviews in Analytical Chemistry, 1997. 27(4): p. 291-305.
    112. Schmid, R.D., et al., BIOSENSORS FOR ANALYSIS OF PESTICIDES IN WATER. Zeitschrift Fur Wasser Und Abwasser Forschung-Journal for Water and Wastewater Research, 1991. 24(1): p. 15-20.
    113. Revoltella, R.P., L.L. Robbio, and B. Liedberg, Comparison of conventional immunoassays (RIA, ELISA) with surface plasmon resonance for pesticide detection and monitoring. Biotherapy, 1998. 11(2-3): p. 135-145.
    114. Miyake, S., Application of immunoassay for residue analysis of pesticides (Part I) Points of ELISA development for pesticide determination and its roper method for using. Journal of Pesticide Science, 2010. 35(2): p. 176-180.
    115. Watanabe, E., The Present State and Perspective on Simple and Rapid Immunochemical Detection for Pesticide Residues in Crops. Jarq-Japan Agricultural Research Quarterly, 2011. 45(4): p. 359-370.
    116. Watanabe, E., S. Miyake, and Y. Yogo, Review of Enzyme-Linked Immunosorbent Assays (ELISAs) for Analyses of Neonicotinoid Insecticides in Agro-environments. Journal of Agricultural and Food Chemistry, 2013. 61(51): p. 12459-12472.
    117. Zaruk, D., et al., Comparison of immunoassay with a conventional method for the determination of Diazinon (R) in surface waters. Analytica Chimica Acta, 2001. 444(1): p. 163-168.
    118. Meulenberg, E.P., L.G. de Vree, and J. Dogterom, Investigation of indicative methods in the Netherlands: validation of several commercial ELISAs for pesticides. Analytica Chimica Acta, 1999. 399(1-2): p. 143-149.
    119. Mostafa, G.A.E., Electrochemical Biosensors for the Detection of Pesticides. The Open Electrochemistry Journal, 2012. 2: p. 22-42.
    120. Perez-Fernandez, B., A. Costa-Garcia, and A. de la Escosura-Muniz, Electrochemical (Bio)Sensors for Pesticides Detection Using Screen-Printed Electrodes. Biosensors-Basel, 2020. 10(4).
    121. Sassolas, A., B. Prieto-Simón, and J.-L. Marty, Biosensors for Pesticide Detection: New Trends. American Journal of Analytical Chemistry, 2012. 03(03): p. 210-232.
    122. Zhang, L.A., et al., Portable glucose meter: trends in techniques and its potential application in analysis. Analytical and Bioanalytical Chemistry, 2019. 411(1): p. 21-36.
    123. Liu, M., et al., Aptasensors for pesticide detection. Biosensors & Bioelectronics, 2019. 130: p. 174-184.
    124. Ramanaviciene, A. and I. Plikusiene, Polymers in Sensor and Biosensor Design. Polymers, 2021. 13(6): p. 3.
    125. Pundir, C.S. and N. Chauhan, Acetylcholinesterase inhibition-based biosensors for pesticide determination: A review. Analytical Biochemistry, 2012. 429(1): p. 19-31.
    126. Liu, X.L., et al., The application and advancement of molecular imprinting technology. Chinese Journal of Analytical Chemistry, 2002. 30(10): p. 1260-1266.
    127. Huynh, T.P., et al., Functionalized polythiophenes: Recognition materials for chemosensors and biosensors of superior sensitivity, selectivity, and detectability. Progress in Polymer Science, 2015. 47: p. 1-25.
    128. Deepshikha and T. Basu, A Review on Synthesis and Characterization of Nanostructured Conducting Polymers (NSCP) and Application in Biosensors. Analytical Letters, 2011. 44(6): p. 1126-1171.
    129. Hristov, S.M., Amperometric biosensors. Bulgarian Chemical Communications, 2008. 40(3): p. 204-210.
    130. Kumar, V., et al., A Potentiometric Biosensor for Cyanide Detection using Immobilized Whole Cell Cyanide Dihydratase of Flavobacterium indicum MTCC 6936. Journal of Analytical Chemistry, 2018. 73(10): p. 1014-1019.
    131. Kuswandi, B., R. Andres, and R. Narayanaswamy, Optical fibre biosensors based on immobilised enzymes. Analyst, 2001. 126(8): p. 1469-1491.
    132. Pohanka, M., Overview of Piezoelectric Biosensors, Immunosensors and DNA Sensors and Their Applications. Materials, 2018. 11(3): p. 13.
    133. Pundir, C.S., A. Malik, and Preety, Bio-sensing of organophosphorus pesticides: A review. Biosensors & Bioelectronics, 2019. 140: p. 5-17.
    134. Nabok, A.V., et al., Total internal reflection ellipsometry and SPR detection of low molecular weight environmental toxins. Applied Surface Science, 2005. 246(4): p. 381-386.
    135. Anh, T.M., et al., Conductometric tyrosinase biosensor for the detection of diuron, atrazine and its main metabolites. Talanta, 2004. 63(2): p. 365-370.
    136. Krasnova, A.I., et al., A polarization fluorescence immunoassay for the herbicide propanil. Analytical Letters, 2001. 34(13): p. 2285-2301.
    137. Heyrovsky, M., The prehistory of polarography. Chemicke Listy, 1997. 91(12): p. 1034-1037.
    138. Barek, J., K. Peckova, and V. Vyskocil, Where Modern Electroanalytical Methods Verge Fifty Years after Nobel Prize for Polarography. Chemicke Listy, 2009. 103(11): p. 889-893.
    139. Rotariu, L., et al., Electrochemical biosensors for fast detection of food contaminants trends and perspective. Trac-Trends in Analytical Chemistry, 2016. 79: p. 80-87.
    140. Garrido, E.M., et al., Electrochemical Methods in Pesticides Control. Analytical Letters, 2004. 37(9): p. 1755-1791.
    141. Oliveira-Brett, A.M., L.A. da Silva, and C.M.A. Brett, Adsorption of guanine, guanosine, and adenine at electrodes studied by differential pulse voltammetry and electrochemical impedance. Langmuir, 2002. 18(6): p. 2326-2330.
    142. Luque, M., A. Rios, and M. Valcarcel, Sensitive determination of paraquat and diquat at the sub-ng ml(-1) level by continuous amperometric flow methods. Analyst, 1998. 123(11): p. 2383-2387.
    143. Gu, Y., et al., Recent advances in nanomaterial‐assisted electrochemical sensors for food safety analysis. Food Frontiers, 2022.
    144. Perez-Fernandez, B., A. Costa-Garcia, and A.E. Muniz, Electrochemical (Bio)Sensors for Pesticides Detection Using Screen-Printed Electrodes. Biosensors (Basel), 2020. 10(4).
    145. Xu, M.L., et al., Detection of Pesticide Residues in Food Using Surface-Enhanced Raman Spectroscopy: A Review. Journal of Agricultural and Food Chemistry, 2017. 65(32): p. 6719-6726.
    146. Ribeiro, J.P.O., et al., FT-NIR and linear discriminant analysis to classify chickpea seeds produced with harvest aid chemicals. Food Chemistry, 2021. 342: p. 8.
    147. Liu, C.L., et al. The Research on Detection and Measurement of Traces of Pesticide (Chlorpyrifos) by Near Infrared (NIR). in 8th International Symposium on Test Measure. 2009. Chongqing, PEOPLES R CHINA: International Academic Publishers Ltd.
    148. Levine, M., Fluorescence-Based Sensing of Pesticides Using Supramolecular Chemistry. Frontiers in Chemistry, 2021. 9: p. 35.
    149. Li, Z.R., et al., Optical sensing techniques for rapid detection of agrochemicals: Strategies, challenges, and perspectives. Science of the Total Environment, 2022. 838: p. 18.
    150. Wang, L., S.J. Pang, and G. Zhou, Recent Advances in Spectroscopy Technology for Trace Analysis of Persistent Organic Pollutants. Applied Sciences-Basel, 2019. 9(17): p. 15.
    151. Yan, X., H.X. Li, and X.G. Su, Review of optical sensors for pesticides. Trac-Trends in Analytical Chemistry, 2018. 103: p. 1-20.
    152. Jiang, L., et al., Evolving trends in SERS-based techniques for food quality and safety: A review. Trends in Food Science & Technology, 2021. 112: p. 225-240.
    153. Tsagkaris, A.S., J. Pulkrabova, and J. Hajslova, Optical Screening Methods for Pesticide Residue Detection in Food Matrices: Advances and Emerging Analytical Trends. Foods, 2021. 10(1): p. 21.
    154. Zhou, X.Y., H.B. Pu, and D.W. Sun, DNA functionalized metal and metal oxide nanoparticles: principles and recent advances in food safety detection. Critical Reviews in Food Science and Nutrition, 2021. 61(14): p. 2277-2296.
    155. Wu, H., et al., A convenient method for determination of malathion based on the resonance Rayleigh scattering enhancement. Journal of Molecular Structure, 2017. 1144: p. 1-8.
    156. Du, D., et al., Development of acetylcholinesterase biosensor based on CdTe quantum dots modified cysteamine self-assembled monolayers. Journal of Electroanalytical Chemistry, 2008. 623(1): p. 81-85.
    157. Sahoo, D., et al., Nanosensing of Pesticides by Zinc Oxide Quantum Dot: An Optical and Electrochemical Approach for the Detection of Pesticides in Water. Journal of Agricultural and Food Chemistry, 2018. 66(2): p. 414-423.
    158. Wu, J.S., et al., Preparation and characterization of bimodal porous alumina-silica and its application to removal of basic nitrogen compounds from light oil. Journal of Materials Chemistry, 2007. 17(21): p. 2233-2240.
    159. Wang, P.Y., et al., Fabricating an Acetylcholinesterase Modulated UCNPs-Cu2+ Fluorescence Biosensor for Ultrasensitive Detection of Organophosphorus Pesticides-Diazinon in Food. Journal of Agricultural and Food Chemistry, 2019. 67(14): p. 4071-4079.
    160. Liu, J., et al., Are plasmonic optical biosensors ready for use in point-of-need applications? Analyst, 2020. 145(2): p. 364-384.
    161. Zeng, S., et al., Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem Soc Rev, 2014. 43(10): p. 3426-52.
    162. Dodero, A., et al., Intelligent Packaging for Real-Time Monitoring of Food-Quality: Current and Future Developments. Applied Sciences, 2021. 11(8).
    163. Liu, J.J., et al., Are plasmonic optical biosensors ready for use in point-of-need applications? Analyst, 2020. 145(2): p. 364-384.
    164. Bernat, A., et al., Challenges in SERS-based pesticide detection and plausible solutions. J Agric Food Chem, 2019. 67(45): p. 12341-12347.
    165. Li, X., et al., Surface-enhanced Raman spectroscopy (SERS)-based immunochromatographic assay (ICA) for the simultaneous detection of two pyrethroid pesticides. Sensors and Actuators B: Chemical, 2019. 283: p. 230-238.
    166. Krasnoslobodtsev, A.V., et al., Nano-immunoassay with improved performance for detection of cancer biomarkers. Nanomedicine, 2015. 11(1): p. 167-73.
    167. Perez-Jimenez, A.I., et al., Surface-enhanced Raman spectroscopy: benefits, trade-offs and future developments. Chemical Science, 2020. 11(18): p. 4563-4577.
    168. Guo, Y.H., et al., Rapid and ultrasensitive detection of food contaminants using surface-enhanced Raman spectroscopy-based methods. Critical Reviews in Food Science and Nutrition, 2021. 61(21): p. 3555-3568.
    169. Le Ru, E.C., et al., A Scheme for Detecting Every Single Target Molecule with Surface-Enhanced Raman Spectroscopy. Nano Letters, 2011. 11(11): p. 5013-5019.
    170. Guo, Y., et al., Rapid and ultrasensitive detection of food contaminants using surface-enhanced Raman spectroscopy-based methods. Crit Rev Food Sci Nutr, 2021. 61(21): p. 3555-3568.
    171. Yuen, C., W. Zheng, and Z.W. Huang, SURFACE-ENHANCED RAMAN SCATTERING: PRINCIPLES, NANOSTRUCTURES, FABRICATIONS, AND BIOMEDICAL APPLICATIONS. Journal of Innovative Optical Health Sciences, 2008. 1(2): p. 267-284.
    172. Balcytis, A., et al., From Fundamental toward Applied SERS: Shared Principles and Divergent Approaches. Advanced Optical Materials, 2018. 6(16).
    173. Li, X.Z., et al., Surface-enhanced Raman spectroscopy (SERS)-based immunochromatographic assay (ICA) for the simultaneous detection of two pyrethroid pesticides. Sensors and Actuators B-Chemical, 2019. 283: p. 230-238.
    174. Logan, N., et al., Handheld SERS coupled with QuEChERs for the sensitive analysis of multiple pesticides in basmati rice. Npj Science of Food, 2022. 6(1): p. 11.
    175. Vongsvivut, J., E.G. Robertson, and D. McNaughton, Surface-enhanced Raman spectroscopic analysis of fonofos pesticide adsorbed on silver and gold nanoparticles. Journal of Raman Spectroscopy, 2010. 41(10): p. 1137-1148.
    176. Guerrini, L., et al., Surface-enhanced Raman spectra of dimethoate and omethoate. Journal of Raman Spectroscopy, 2011. 42(5): p. 980-985.
    177. Xie, Y.F., et al., Establishment of rapid detection method of methamidophos in vegetables by surface enhanced Raman spectroscopy. European Food Research and Technology, 2012. 234(6): p. 1091-1098.
    178. Fan, M., G.F. Andrade, and A.G. Brolo, A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Anal Chim Acta, 2011. 693(1-2): p. 7-25.
    179. Yang, Y., et al., Surface Enhanced Raman Spectroscopy: Applications in Agriculture and Food Safety. Photonics, 2021. 8(12).
    180. Fang, H., et al., Ultrasensitive and quantitative detection of paraquat on fruits skins via surface-enhanced Raman spectroscopy. Sensors and Actuators B: Chemical, 2015. 213: p. 452-456.
    181. Roldán, M.L., et al., Interaction of soil humic acids with herbicide paraquat analyzed by surface-enhanced Raman scattering and fluorescence spectroscopy on silver plasmonic nanoparticles. Analytica Chimica Acta, 2011. 699(1): p. 87-95.
    182. Gao, R., et al., Highly sensitive trace analysis of paraquat using a surface-enhanced Raman scattering microdroplet sensor. Analytica Chimica Acta, 2010. 681(1): p. 87-91.
    183. Li, Q.Q., et al., Ultra sensitive surface-enhanced Raman scattering detection based on monolithic column as a new type substrate. Journal of Raman Spectroscopy, 2012. 43(10): p. 1392-1396.
    184. Pang, S.T.R., T.X. Yang, and L.L. He, Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides. Trac-Trends in Analytical Chemistry, 2016. 85: p. 73-82.
    185. Atanasov, P.A., et al., Surface-Enhanced Raman Spectroscopy (SERS) of Mancozeb and Thiamethoxam Assisted by Gold and Silver Nanostructures Produced by Laser Techniques on Paper. Applied Spectroscopy, 2019. 73(3): p. 313-319.
    186. Chen, M., et al., Simultaneous In Situ Extraction and Fabrication of Surface-Enhanced Raman Scattering Substrate for Reliable Detection of Thiram Residue. Analytical Chemistry, 2018. 90(22): p. 13647-13654.
    187. Dikovska, A.O., et al. Preparation of metal nanorods substrates for SERS application. in 17th International School on Quantum Electronics - Laser Physics and Applications (ISQE). 2012. Nessebar, BULGARIA.
    188. Farling, C.G., et al., Fabrication of high quality electrochemical SERS (EC-SERS) substrates using physical vapour deposition. Physical Chemistry Chemical Physics, 2021. 23(36): p. 20065-20072.
    189. Cintra, S., et al., Sculpted substrates for SERS. Faraday Discussions, 2006. 132: p. 191-199.
    190. Kruszewski, S. and M. Cyrankiewicz, Aggregated Silver Sols as SERS Substrates. Acta Physica Polonica A, 2012. 121(1A): p. A68-A74.
    191. Zhang, D., et al., Controllable Self-Assembly of SERS Hotspots in Liquid Environment. Langmuir, 2021. 37(2): p. 939-948.
    192. Liu, S.P., et al., Fabrication of Ag/Au core-shell nanowire as a SERS substrate. Optical Materials, 2013. 35(3): p. 690-692.
    193. Zhang, L.Y., et al., Cellulose nanofibre textured SERS substrate. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2015. 468: p. 309-314.
    194. Shin, K., et al., Au nanoparticle-encapsulated hydrogel substrates for robust and reproducible SERS measurement. Analyst, 2013. 138(3): p. 932-938.
    195. Lin, S., et al., A dual-functional PDMS-assisted paper-based SERS platform for the reliable detection of thiram residue both on fruit surfaces and in juice. Analytical Methods, 2020. 12(20): p. 2571-2579.
    196. Sun, X. and H. Li, A Review: Nanofabrication of Surface-Enhanced Raman Spectroscopy (SERS) Substrates. Current Nanoscience, 2016. 12(2): p. 175-183.
    197. Jirasek, A., et al., Accuracy and Precision of Manual Baseline Determination. Applied Spectroscopy, 2004. 58(12): p. 1488-1499.
    198. Liang, Y.-Z., A.K.-M. Leung, and F.-T. Chau, A roughness penalty approach and its application to noisy hyphenated chromatographic two-way data. Journal of Chemometrics, 1999. 13(5): p. 511-524.
    199. Shao, X., W. Cai, and Z. Pan, Wavelet transform and its applications in high performance liquid chromatography (HPLC) analysis. Chemometrics and Intelligent Laboratory Systems, 1999. 45(1): p. 249-256.
    200. Shao, X.-G., A.K.-M. Leung, and F.-T. Chau, Wavelet:  A New Trend in Chemistry. Accounts of Chemical Research, 2003. 36(4): p. 276-283.
    201. Schechter, I., Correction for Nonlinear Fluctuating Background in Monovariable Analytical Systems. Analytical Chemistry, 1995. 67(15): p. 2580-2585.
    202. Ruckstuhl, A.F., et al., Baseline subtraction using robust local regression estimation. Journal of Quantitative Spectroscopy & Radiative Transfer, 2001. 68(2): p. 179-193.
    203. Lieber, C.A. and A. Mahadevan-Jansen, Automated Method for Subtraction of Fluorescence from Biological Raman Spectra. Applied Spectroscopy, 2003. 57(11): p. 1363-1367.
    204. Golotvin, S. and A. Williams, Improved Baseline Recognition and Modeling of FT NMR Spectra. Journal of Magnetic Resonance, 2000. 146(1): p. 122-125.
    205. Carlos Cobas, J., et al., A new general-purpose fully automatic baseline-correction procedure for 1D and 2D NMR data. Journal of Magnetic Resonance, 2006. 183(1): p. 145-151.
    206. Chang, D., C.D. Banack, and S.L. Shah, Robust baseline correction algorithm for signal dense NMR spectra. Journal of Magnetic Resonance, 2007. 187(2): p. 288-292.
    207. Boelens, H.F., et al., New background correction method for liquid chromatography with diode array detection, infrared spectroscopic detection and Raman spectroscopic detection. J Chromatogr A, 2004. 1057(1-2): p. 21-30.
    208. Mazet, V., et al., Background removal from spectra by designing and minimising a non-quadratic cost function. Chemometrics and Intelligent Laboratory Systems, 2005. 76(2): p. 121-133.
    209. Zhao, J., et al., Automated Autofluorescence Background Subtraction Algorithm for Biomedical Raman Spectroscopy. Applied Spectroscopy, 2007. 61(11): p. 1225-1232.
    210. Morháč, M. and V. Matoušek, Peak Clipping Algorithms for Background Estimation in Spectroscopic Data. Applied Spectroscopy, 2008. 62(1): p. 91-106.
    211. Zhang, Z.-M., et al., An intelligent background-correction algorithm for highly fluorescent samples in Raman spectroscopy. Journal of Raman Spectroscopy, 2010. 41(6): p. 659-669.
    212. Eilers, P.H.C., A perfect smoother. Analytical Chemistry, 2003. 75(14): p. 3631-3636.
    213. Gan, F., G.H. Ruan, and J.Y. Mo, Baseline correction by improved iterative polynomial fitting with automatic threshold. Chemometrics and Intelligent Laboratory Systems, 2006. 82(1-2): p. 59-65.
    214. Hu, Y.G., et al., A background elimination method based on wavelet transform for Raman spectra. Chemometrics and Intelligent Laboratory Systems, 2007. 85(1): p. 94-101.
    215. Leger, M.N. and A.G. Ryder, Comparison of derivative preprocessing and automated polynomial baseline correction method for classification and quantification of narcotics in solid mixtures. Applied Spectroscopy, 2006. 60(2): p. 182-193.
    216. Zhang, Z.M., S. Chen, and Y.Z. Liang, Baseline correction using adaptive iteratively reweighted penalized least squares. Analyst, 2010. 135(5): p. 1138-46.
    217. Zhang, Z.M., S. Chen, and Y.Z. Liang, Baseline correction using adaptive iteratively reweighted penalized least squares. ANALYST, 2010. 135(5): p. 1138-1146.
    218. Diez-Pastor, J.F., et al., Machine learning algorithms applied toRaman spectra for the identification of variscite originating from the mining complex ofGava. Journal of Raman Spectroscopy, 2020. 51(9): p. 1563-1574.
    219. Hu, S., et al., Raman spectroscopy combined with machine learning algorithms to detect adulterated Suichang native honey. Sci Rep, 2022. 12(1): p. 3456.
    220. Mandrell, C.T., et al., Machine Learning Approach to Raman Spectrum Analysis of MIA PaCa-2 Pancreatic Cancer Tumor Repopulating Cells for Classification and Feature Analysis. Life (Basel), 2020. 10(9).
    221. Ullah, R., et al., Raman spectroscopy combined with a support vector machine for differentiating between feeding male and female infants mother's milk. Biomed Opt Express, 2018. 9(2): p. 844-851.
    222. Strickland, A.D. and C.A. Batt, Detection of Carbendazim by Surface-Enhanced Raman Scattering Using Cyclodextrin Inclusion Complexes on Gold Nanorods. Analytical Chemistry, 2009. 81(8): p. 2895-2903.
    223. Ibrahim, F.A. and J.J.M. Nasr, Direct determination of ampicillin and amoxicillin residues in food samples after aqueous SDS extraction by micellar liquid chromatography with UV detection. Analytical Methods, 2014. 6(5): p. 1523-1529.
    224. Driskell, J.D., et al., The Use of Aligned Silver Nanorod Arrays Prepared by Oblique Angle Deposition as Surface-Enhanced Raman Scattering Substrates (vol 112, pg 895, 2008). Journal of Physical Chemistry C, 2011. 115(40): p. 20052-20052.
    225. Yoshida, K., et al., Quantitative evaluation of electromagnetic enhancement in surface-enhanced resonance Raman scattering from plasmonic properties and morphologies of individual Ag nanostructures (vol 81, 115406, 2010). Physical Review B, 2011. 83(11): p. 1.
    226. Yu, J. and J.G. Amar, Dynamical scaling behavior in two-dimensional ballistic deposition with shadowing. Phys Rev E Stat Nonlin Soft Matter Phys, 2002. 66(2 Pt 1): p. 021603.
    227. Srivastava, S.K., et al., SERS Biosensor Using Metallic Nano-Sculptured Thin Films for the Detection of Endocrine Disrupting Compound Biomarker Vitellogenin. Small, 2014. 10(17): p. 3579-3587.
    228. Tang, H.R., et al., Surface enhanced Raman spectroscopy signals of mixed pesticides and their identification. Chinese Chemical Letters, 2011. 22(12): p. 1477-1480.
    229. Dao, T.C., et al., Application of silver nanodendrites deposited on silicon in SERS technique for the trace analysis of paraquat. Advances in Natural Sciences-Nanoscience and Nanotechnology, 2016. 7(1): p. 6.
    230. Nguyen, T.H.D., et al., Use of Graphene and Gold Nanorods as Substrates for the Detection of Pesticides by Surface Enhanced Raman Spectroscopy. Journal of Agricultural and Food Chemistry, 2014. 62(43): p. 10445-10451.
    231. Augustat, S., Radley, J. A.: Starch and Its Derivatives. 4. Auflage. Chapman and Hall Ltd., London 1968. 558 Seiten, Format 15 × 23,5 cm, Ganzleinen, Preis £ 7,–. Starch - Stärke, 1970. 22(2): p. 70-71.
    232. Zou, T.T., et al., Determination of Paraquat in Vegetables Using HPLC-MS-MS. Journal of Chromatographic Science, 2015. 53(2): p. 204-209.
    233. Samal, A.K., et al., Size Tunable Au@Ag Core–Shell Nanoparticles: Synthesis and Surface-Enhanced Raman Scattering Properties. Langmuir, 2013. 29(48): p. 15076-15082.
    234. Yang, Y., et al., Transformation of Ag Nanocubes into Ag–Au Hollow Nanostructures with Enriched Ag Contents to Improve SERS Activity and Chemical Stability. ACS Applied Materials & Interfaces, 2014. 6(5): p. 3750-3757.
    235. Sánchez-Cortés, S., et al., Raman and surface-enhanced Raman spectroscopy of dithiocarbamate fungicides. Vibrational Spectroscopy, 1998. 17(2): p. 133-144.
    236. Kang, J.-S., Hong, Yeon-Pyo, Lee, Chul-Jae, & Lee, Mu-Sang., SERBS of Dithiocarbamate Pesticides Adsorbed on Silver Surface ; Thiram. Bulletin of the Korean Chemical Society, 2002. 23(11): p. 1604–1610.
    237. Koh, T.Y., SERS of dithiocarbamates and xanthates. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 1995. 51(12): p. 2177-2192.
    238. Sánchez-Cortés, S., et al., Surface-Enhanced Vibrational Study (SEIR and SERS) of Dithiocarbamate Pesticides on Gold Films. Langmuir, 2001. 17(4): p. 1157-1162.
    239. Honda, M., et al., Infra-red and PMR spectra of some organotin (IV) N, N-dimethyldithiocarbamates. Journal of Inorganic and Nuclear Chemistry, 1968. 30(12): p. 3231-3237.
    240. Van Wart, H.E. and H.A. Scheraga, Raman spectra of strained disulfides. Effect of rotation about sulfur-sulfur bonds on sulfur-sulfur stretching frequencies. The Journal of Physical Chemistry, 1976. 80(16): p. 1823-1832.
    241. Zhang, L., et al., Synthesis of silver nanowires as a SERS substrate for the detection of pesticide thiram. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014. 133: p. 411-416.
    242. Liu, S., et al., Controlled depositing of silver nanoparticles on flexible film and its application in ultrasensitive detection. RSC Advances, 2014. 4(80): p. 42358-42363.
    243. Yang, J.-K., et al., Single-Step and Rapid Growth of Silver Nanoshells as SERS-Active Nanostructures for Label-Free Detection of Pesticides. ACS Applied Materials & Interfaces, 2014. 6(15): p. 12541-12549.
    244. Liu, B., et al., Shell Thickness-Dependent Raman Enhancement for Rapid Identification and Detection of Pesticide Residues at Fruit Peels. Analytical Chemistry, 2012. 84(1): p. 255-261.
    245. Wu, Y., et al., Three horizontal anchor porphyrins for dye-sensitized solar cells: An optical, electrochemical and photovoltaic investigation. Polyhedron, 2016. 117: p. 155-160.
    246. Guo, P., et al., Plasmonic core–shell nanoparticles for SERS detection of the pesticide thiram: size- and shape-dependent Raman enhancement. Nanoscale, 2015. 7(7): p. 2862-2868.
    247. Wang, Y., et al., Surface-enhanced Raman scattering on a hierarchical structural Ag nano-crown array in different detection ways. Physical Chemistry Chemical Physics, 2015. 17(2): p. 1173-1179.
    248. Zhu, J., et al., Multi-branched gold nanostars with fractal structure for SERS detection of the pesticide thiram. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018. 189: p. 586-593.
    249. Crnogorac, G. and W. Schwack, Determination of dithiocarbamate fungicide residues by liquid chromatography/mass spectrometry and stable isotope dilution assay. Rapid Communications in Mass Spectrometry, 2007. 21(24): p. 4009-4016.
    250. Crnogorac, G., S. Schmauder, and W. Schwack, Trace analysis of dithiocarbamate fungicide residues on fruits and vegetables by hydrophilic interaction liquid chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2008. 22(16): p. 2539-2546.
    251. Schmidt, B., et al., Method validation and analysis of nine dithiocarbamates in fruits and vegetables by LC-MS/MS. Food Additives & Contaminants: Part A, 2013. 30(7): p. 1287-1298.
    252. Kakitani, A., et al., A rapid and sensitive analysis of dithiocarbamate fungicides using modified QuEChERS method and liquid chromatography-tandem mass spectrometry. J Pestic Sci, 2017. 42(4): p. 145-150.
    253. Crnogorac, G. and W. Schwack, Residue analysis of dithiocarbamate fungicides. TrAC Trends in Analytical Chemistry, 2009. 28(1): p. 40-50.
    254. Burges, H.D., Formulation of microbial biopesticides: beneficial microorganisms, nematodes and seed treatments. 2012: Springer Science & Business Media.
    255. Atanasov, P., et al., SERS of insecticides and fungicides assisted by Au and Ag nanostructures produced by laser techniques. Intern J of Environmental & Agriculture Research, 2017. 3: p. 61-69.

    QR CODE