簡易檢索 / 詳目顯示

研究生: 周哲寬
Chou, Che-Kuan
論文名稱: CuGa和In雙靶共濺鍍前驅層後硒化法製作銅銦鎵硒太陽能電池吸收層之研究與太陽能電池的擬合和模擬程式之製作
A. Optimization of CIGS absorber fabricated with co-sputtering of CuGa and In targets, and selenization B. Matlab Programming for the fitting of solar cell's characteristics with two-diode model C. Matlab programming for the terrestrial PV energy harvesting
指導教授: 甘炯耀
Gan, Jon-Yiew
口試委員: 賴志煌
Lai, Chih-Huang
徐偉倫
Xu, Wei-Lun
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 109
中文關鍵詞: 太陽能電池銅銦鎵硒薄膜曲線擬合基因演算法
外文關鍵詞: Solar cell, CIGS thin film, Curve fitting, Genetic algorithm
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分為三個主題,第一個主題為使用濺鍍前驅層後硒化方式製作CIGS電池的吸收層。濺鍍前驅層的方式使用共濺鍍,目的為改善分層濺鍍可能會遇到的問題,包括薄膜的不均勻和硒化過程中過於劇烈的相變化等,並兼顧適當的Ga深度分佈梯度和MoSe2的厚度。本研究對於CIGS薄膜的結晶性、成分、載子生命週期等性質進行分析,且這些性質皆具有一定程度的表現。

    第二個主題為使用Matlab發展出一套能夠對太陽能電池的J-V曲線進行擬合的程式。本研究使用基因演算法進行擬合,該演算法能夠在龐大的解空間中迅速地找到優良的解。此外,該程式兼顧精確性和便利性,並適用於多組數據的自動連續多次擬合。

    第三個主題為探討AOI對於電池性能的影響,並將結果運用在BIPV的應用上。本研究利用實際測量和模擬的方式,試著了解Jsc、J-V曲線、EQE等電池參數和AOI的關係。此外,本研究製作出一套電池性能模擬程式,能夠計算電池在不同時間、地點、擺放角度所接收到的輻照度,並根據輻照度計算出該情況的電池性能。


    There are three subjects in this study. The first subject is fabrication of CIGS absorbers by sputtering and selenization. Precursors were deposited by co-sputtering in order to overcome problems of sequentially sputtering, such as inhomogeneity in films and dramatic phase evolution during selenization. Moreover, we tried to achieve appropriate Ga gradient and thickness of MoSe2. The material properties of CIGS films were characterized, such as crystallinity, composition and carrier lifetime, and these properties are close to the level of regular CIGS films showed in past publications.

    The second subject is focusing on the development of Matlab program for cell’s light J-V curve fitting. We use genetic algorithm to carry out curve fitting, and this algorithm can find high-quality solutions in a large search space in a short time. Furthermore, the program is accurate and convenient to use, and is good at handling many curves and doing curve fitting many times automatically.

    The third subject is investigating the effects of AOI on cell performance, and using the results in the application of BIPV . We tried to recognize the correlation between Jsc, J-V curve, EQE and AOI by experiments and simulation. Moreover, we construct a program that can do simulation of irradiance received by cells in different time, location, orientation, and use irradiance to calculate cell performance.

    第一章、前言與研究動機 1 第二章、CIGS吸收層製作與分析 3 2.1 研究理論與文獻回顧 3 2.1.1太陽能電池工作原理 3 2.1.2 太陽能電池的電路模型 4 2.1.3 CIGS電池的優點 9 2.1.4 CIGS電池結構 10 2.1.5 CIGS電池的製作方法 16 2.2 實驗步驟與方法 18 2.2.1 CIGS吸收層製作流程 18 2.2.2 材料分析方法 22 2.3 結果與討論 26 2.3.1 濺鍍壓力對前驅層的影響 26 2.3.2 峰值溫度對CIGS吸收層的影響 27 2.3.3 濺鍍功率對CIGS吸收層的影響 30 2.3.4 最佳參數試片的元素深度分布和TRPL圖譜 32 2.4 結論 36 第三章、電池性能擬合程式製作與檢測 37 3.1 研究理論與文獻回顧 37 3.2 實驗步驟與方法 40 3.3 結果與討論 49 3.4 結論 51 第四章、電池在不同AOI的模擬程式製作 52 4.1 研究理論與文獻回顧 52 4.1.1太陽光的光譜輻照度 52 4.1.2 建築整合太陽能 54 4.1.3 入射角度對於電池性能的影響 55 4.2 實驗步驟與方法 57 4.3 結果與討論 60 4.3.1 AOI對於Jsc的影響 60 4.3.2 AOI對於I-V曲線的影響 62 4.3.3 AOI對於EQE的影響 64 4.3.4 建立電池性能模擬程式 66 4.4 結論 69 第五章、結論與未來研究建議 70 第六章、參考文獻 71 第七章、附錄 75 1. J-V曲線擬合程式使用方法 75 2.電池性能模擬程式使用方法 76 3. J-V曲線擬合程式之程式碼 78 4.電池性能模擬程式之程式碼 90

    [1] Best Research-Cell Efficiency Chart https://www.nrel.gov/pv/cell-efficiency.html
    [2] William N. Shafarman et al., “Cu(InGa)Se2 Solar Cells”, p.553, Handbook of Photovoltaic Science and Engineering, 2011.
    [3] Shih Binghao, “Effects of molybdenum electrode layers on performance of CIGS thin film solar cells”, 2011.
    [4] Minlin Jiang, “Cu2ZnSnS4 Thin Film Solar Cells: Present Status and Future Prospects”, IntechOpen, DOI: 10.5772/50702, 2012.
    [5] Chia-Hua Huang et al., “Deposition Technologies of High-Efficiency CIGS Solar Cells: Development of Two-Step and Co-Evaporation Processes”, Crystals, 8(7), p.296, 2018.
    [6] Paulson P et al., “Optical characterization of CuIn1-xGaxSe2 alloy thin films by spectroscopic ellipsometry”, J. Appl. Phys. 94, pp.879–888, 200.
    [7] Panagiota Arnou et al., “Solution processing of CuIn(S,Se)2 and Cu(In,Ga)(S,Se)2 thin film solar cells using metal chalcogenide precursors”, Volume 633, p.76-80, Thin Solid Films, 2017.
    [8] Hana Sim et al., “A Study on the Band Structure of ZnO/CdS Heterojunction for CIGS Solar-Cell Application”, Journal of Semiconductor Technology and Science, 15(2):267-275, 2015.
    [9] C. H. Wu et al., “Effect of Selenization Processes on CIGS Solar Cell Performance”, J Nanosci Nanotechnol., Vol. 18, pp.5074–5081, 2018.
    [10] G. M. Hanket et al., “Incongruent reaction of Cu–(InGa) intermetallic precursors in H2Se and H2S”, JOURNAL OF APPLIED PHYSICS, 074922, 2007.
    [11] Ho KeunSong et al., “Fabrication of CuIn1-xGaxSe2 thin film solar cells by sputtering and selenization process”, Volume 435, Issues 1–2, pp.186-192, 2003.
    [12] Wei-Ting Lin et al., “Manipulation of MoSe2 Films on CuIn(Ga)Se2 Solar Cells during Rapid Thermal Process”, Article ID 253285, 2014.
    [13] Question About XRF and Element Ions
    https://www.thermofisher.com/blog/metals/question-about-xrf-and-element-ions/
    [14] Auger effect
    http://www.daviddarling.info/encyclopedia/A/Auger_effect.html
    [15] Photoluminescence(PL)
    http://www.ee.ncu.edu.tw/~pwli/OH%E5%93%A5/QDs%20physical%20properties.pdf
    [16] C.H.Chung et al., “Phase formation and control of morphology in sputtered Cu-In alloy layers”, Solid State Communications, Vol.126, pp.185-190, 2003.
    [17] Yi-Cheng Lin et al., “A study on MoSe2 layer of Mo contact in Cu(In,Ga)Se2 thin film solar cells”, Thin Solid Films 570, pp.166-171, 2014.
    [18] Takeaki Sakurai et al., “Time-Resolved Micro photoluminescence Study of Cu(In,Ga)Se2”, Japanese Journal Applied Physics, 50, 05FC01, 2011.
    [19] Xiaobo Hu et al., “Investigation of the properties of deep-level defect in Cu(In,Ga)Se2 thin films by steady-state photocapacitance and time-resolved photoluminescence measurements”, Japanese Journal of Applied Physics 54, 04DR02 ,2015.
    [20] Jakapan Chantana et al., “Time-resolved photoluminescence of Cu(In,Ga)(Se,S)2 thin films and temperature dependent current density-voltage characteristics of their solar cells on surface treatment effect”, Current Applied Physics, pp. 461-466, Volume 17, Issue 4, 2017.
    [21] K. I. Ishibashi et al., “An extensively valid and stable method for derivation of all parameters of a solar cell from a single current-voltage characteristic”, Journal of Applied Physics, vol. 103, no. 9, article 094507, 2008.
    [22] C. Zhang et al., “A simple and efficient solar cell parameter extraction method from a single current-voltage curve”, Journal of Applied Physics, vol. 110, no. 6, article 64504, 2011.
    [23] Markus Diantoro et al., “Shockley’s Equation Fit Analyses for Solar Cell Parameters from I-V Curves”, International Journal of Photoenergy, Article ID 9214820, 2018.
    [24] PVlighthouse https://www.pvlighthouse.com.au/equivalent-circuit
    [25] Basic Genetic Algorithm - File Exchange - MATLAB Central
    https://ww2.mathworks.cn/matlabcentral/fileexchange/39021-basic-genetic-algorithm
    [26] Schüco BIPV: building-integrated photovoltaics is future-oriented
    https://www.pveurope.eu/Products/Solar-Generator/Solar-modules/Schueco-BIPV-building-integrated-photovoltaics-is-future-oriented
    [27] Solar energy technologies and applications https://slideplayer.com/slide/14262406/
    [28] Standard Solar Spectra https://www.pveducation.org/pvcdrom/appendices/standard-solar-spectra
    [29] Global Building Integrated Photovoltaics (BIPV) Market Insights & Depth Analysis https://newsearlier.com/25632/global-building-integrated-photovoltaics-bipv-market-insights-depth-analysis-first-solar-inc-onyx-solar-group-llc-sharp-solar/
    [30] Åsbjørn Skaaland et al., “Potential and Challenges for Building Integrated Photovoltaics in the Agder Region”, Technical Report, no. 6, pp. 1–120, 2011.
    [31] Wen-Jeng Ho et al., “Plasmonic Light Scattering in Textured Silicon Solar Cells with Indium Nanoparticles from Normal to Non-Normal Light Incidence,” Materials, 10, 737-1, 2017.
    [32] Russell J. Beal et al., IEEE Journal of Photovoltaics, Volume 4, pp.1459-1464, 2014.
    [33] James M. Ball et al., “Optical properties and limiting photocurrent of thin-film perovskite solar cells”, Energy Environ. Sci., 8, 602, 2015.
    [34] R. M. Milne, “Note on the Equation, of Time”, The Mathematical Gazette, vol. 10, no. 155, pp.372 - 375, 1921.
    [35] P. I. Cooper, “The absorption of radiation in solar stills”, Solar Energy, vol. 12, pp.333 - 346, 1969.
    [36] Richard E. et al., "Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the Earth's surface for cloudless atmospheres," Journal of Climate and Applied Meteorology, 25, pp.87–97, 1986.

    QR CODE