簡易檢索 / 詳目顯示

研究生: 林怡伶
Lin, Yi-Ling
論文名稱: Credit Portfolio Risk Management with Heavy-Tailed Risk Factors
指導教授: 韓傳祥
Han, Chuan-Hsiang
口試委員:
學位類別: 碩士
Master
系所名稱: 科技管理學院 - 計量財務金融學系
Department of Quantitative Finance
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 46
中文關鍵詞: 信用風險管理重點抽樣法投資組合風險值厚尾
外文關鍵詞: Credit Risk Management, Importance sampling, Portfolio VaR, Heavy-Tailed
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • It is basic and important to compute the portfolio VaR (PVaR) and the loss density function of a credit portfolio in risk management. To estimate these quantities, we focus on calculating the (joint) default probabilities. We model the market returns data by copula methods such as Gaussian copula and Student's t copula. Student's t copula provides a heavy-tailed distribution, so it is more commonly used in practice than normal distribution.

    Basic Monte Carlo method doesn't work well for rare event simulation because its standard error is relatively large. We develop efficient importance sampling algorithms to accurately estimate the (joint) default probabilities. These algorithms are capable of increasing the possibilities of rare events and reducing the standard error of the estimators. We use a transformation method developed by Glasserman et al. (2002) to construct moment generating functions associated with proposed importance sampling algorithms. We compare the efficiency of our importance sampling with other (conditional) importance sampling algorithms.

    For applications, we evaluate (1) the default leg premium of Basket Default Swap (2) the loss density function of a portfolio and (3) PVaR. The first application is useful for CDO pricing. The second and third applications are useful for risk management of a credit portfolio. In particular for the third application, we apply Gaussian copula and Student's t copula model to fit a company's stock price and its CDS price and estimate the PVaR. Some backtesting diagnostics are used to examine the performance of PVaR estimates.


    1 Introduction 1 2 Introduction to Copula Function 3 3 Derivation of Importance Sampling for Estimating Joint Default Probability 5 3.1 Basic Monte Carlo Method . . . . . . . . . . . . . . . . . . . . . . . 6 3.2 Importance Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.2.1 Normal distribution . . . . . . . . . . . . . . . . . . . . . . . 7 3.2.2 Student’s t distribution . . . . . . . . . . . . . . . . . . . . . 9 3.3 Numerical Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 13 4 Comparison of Conditional Importance Sampling and Importance Sampling Comparison 17 4.1 Theoretical Comparison . . . . . . . . . . . . . . . . . . . . . . . . 17 4.2 Numerical Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 20 5 Some Extension for Importance Sampling under Student’s t Cop- ula 22 5.1 Change Measure for the Normal Variable (  1) . . . . . . . . . . 22 5.2 Change Measure for the Chi-Square Random Variable (  1) . . . 23 5.3 Numerical Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 24 6 Application I: Basket Default Swap 26 6.1 Introduction to Basket Default Swap . . . . . . . . . . . . . . . . . 26 6.2 Algorithms under Gaussian Copula . . . . . . . . . . . . . . . . . . 27 6.2.1 Basic Monte Carlo Method . . . . . . . . . . . . . . . . . . . 27 6.2.2 Direct Importance Sampling . . . . . . . . . . . . . . . . . . 28 6.2.3 Numerical Comparison . . . . . . . . . . . . . . . . . . . . . 29 6.3 Algorithms under Student’s t Copula . . . . . . . . . . . . . . . . . 31 6.3.1 Basic Monte Carlo Method . . . . . . . . . . . . . . . . . . . 31 6.3.2 Direct Importance Sampling . . . . . . . . . . . . . . . . . . 32 6.3.3 Numerical Comparison . . . . . . . . . . . . . . . . . . . . . 33 7 Application II: Loss Density Function 35 7.1 Importance Sampling Algorithm under Gaussian Copula . . . . . . 35 7.2 Importance Sampling Algorithm under Student’s t Copula . . . . . 37 7.3 Numerical Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 38 8 Application III: Estimate PVaR under Copula 40 8.1 Empirical and Backtesting Results . . . . . . . . . . . . . . . . . . 41 9 Conclusion 44 Reference 45

    [1] Cherubini, U., E. Luciano, and W. Vecchiato. (2004) Copula Methods in Fi-
    nance, Wiley.
    [2] C. H. Chang. (2009) Importance Sampling Estimation of Loss Density Function
    under Structural-Form Models, Master’s Thesis, National Tsing Hua
    University.
    [3] Chiang, M. H., M. L. Yueh, and M. H. Hsieh. (2007) An Efficient Algorithm
    for Basket Default Swap Valuation. Journal of Derivatives, Winter: 1-22,
    [4] Duffie, D. and K. J. Singleton. (2003) Credit Risk Modeling: Pricing, Measure-
    ment and Management. Princeton University Press, Princeton, New Jersey.
    [5] Fuh, Cheng-der, Hu, Inchi, Hsu, Kate and Wang, Ren-Her. (2010) Efficient
    Computation of Value at Risk with Heavy-Tailed Risk Factors, working paper.
    [6] Genz, A. and F. Bretz. (1999) Numerical Computation of Multivariate t Probabilities
    with Application to Power Calculation of Multiple Contrasts, Journal
    of Statistical Computation and Simulation, 63:361-378.
    [7] Glasserman, P., Heidelberger, P., and Shahabuddin, P. (1999) Asymptotically
    optimal importance sampling and stratification for path-dependent options,
    Mathematical Finance 9:117152.
    [8] Glasserman, P., Heidelberger, P., and Shahabuddin, P. (2000) Variance reduction
    techniques for estimating value-at-risk. Management Science 46:1349
    1364.
    [9] Glasserman, P., Heidelberger, P., and Shahabuddin, P. (2002) Portfolio
    valueat- risk with heavy-tailed risk factors, Mathematical Finance 12:239269.
    [10] Glasserman, P. (2003) Monte Carlo Methods in Financial Engineering,
    Springer-Verlag, New York.
    [11] Gregory, J. and J. P. Laurent. (2004) In the Core of Correlation. Risk, October:
    87-91.
    [12] Hull J.C. (2007) Risk Management and Financial Institutions, Pearson Education
    [13] Jorion, P. (2007) Value-at-Risk: The New Benchmark for Managing Risk. 2nd
    Edition: McGraw-Hill.
    [14] K. H. Lee, (2009) Efficient Importance Sampling in Estimation of Default
    Probability under Factor Copula Model, Master Thesis, National Chiao-Tung
    University.
    [15] Lando, D. (2004) Credit Risk Modeling: Theory and Applications. Princeton
    University Press, Princeton, New Jersey.
    [16] Li, D. X. (2000) On Default Correlation: A Copula Function Approach. Jour-
    nal of Fixed Income, 9:43-54.
    [17] Merino, S., and Nyfeler, M. A. (2004) Applying importance sampling for
    estimating coherent credit risk contributions. Quantitative Finance, 4:199-
    207.
    [18] R. Carmona, J.P. Fouque, and D. Vestal. (2009) Interacting Particle Systems
    for the Computation of Rare Credit Portfolio Losses. Finance and Stochastics,
    13(4):613-633.
    [19] Sch¨onbucher, P. (2003) Credit Derivatives Pricing Models: Model, Pricing
    and Implementation. Wiley, Chichester, England.
    [20] Sklar, A. (1959) Fonctions de repartition `a n dimensions et leurs marges. Pub.
    Inst. Statist. Univ.Paris, 8:229231.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE