簡易檢索 / 詳目顯示

研究生: 陳韋辰
Chen, Wei-Chen
論文名稱: 高效能之4H碳化矽橫向金氧半場效電晶體與可靠度研究
Study on High Performance 4H-SiC LDMOS and its Reliability
指導教授: 黃智方
Huang, Chih-Fang
口試委員: 崔秉鉞
Tsui, Bing-Yue
吳添立
Wu, Tian-Li
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2020
畢業學年度: 109
語文別: 中文
論文頁數: 69
中文關鍵詞: 4H碳化矽橫向金氧半場效電晶體可靠度電荷汲引熱載子效應
外文關鍵詞: 4H-SiC, LDMOS, Reliability, Charge pumping, Hot carrier effect
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此論文研究高性能4H-SiC LDMOS,藉由模擬元件重要參數設計出最佳的結構(通道長度、飄移區長度、場平板長度、P-top長度、JFET寬度、P-top劑量)。後續實驗量測結果與模擬結果趨勢相當,在崩潰電壓達到1100 V時特徵導通阻抗為18.4 mΩ•cm2,計算此結果之BFOM為65.7 MW/cm2,目前為止是4H-SiC LDMOS的最高紀錄。
    除此之外也針對了此元件做初步的可靠度評估,使用電荷汲引量測手法估算熱載子效應造成的介面態以及在Vds = 200 V條件下進行熱載子加壓50000秒來預測Id,lin、Id,sat、Vth 0.2年後的衰退。另外,由於此LDMOS將來會運用於閘極驅動電路,所以切換特性也是重要的一項指標,因此針對此元件量測了閘極電荷(Qg、Qgd、Qgs)與輸出功率電容,並計算了Ron×Qg與Ron×Qgd分別為17600 mΩ.nC與4290 mΩ.nC。同時也在Vds為600 V的條件下對此元件使用脈衝量測的方式做了動態導通阻抗的量測,結果為特徵導通阻抗上升小於4%。


    This thesis studies the design of high-performance 4H-SiC LDMOS, based on simulation results with critical parameters such as (channel length, drift region length, P-top length, JFET region length, P-top dose). Follow-up experiment results show similar trends as the simulation. The measured breakdown voltage reaches 1100 V, and Ron,sp is 18.4 mΩ•cm2. The BFOM calculated for this result is 65.7 MW/cm2, which is the highest record for 4H-SiC LDMOS so far.
    In addition, preliminary reliability evaluation of this device was also performed, using charge pumping measurement methods to estimate the interface states caused by hot carrier stress up to 50000s under the condition of Vds = 200 V to predict Id,lin, Id,sat, and Vth. Since the LDMOS will be used in gate drive circuits in the future, switching characteristics such as the gate charge (Qg, Qgd, Qgs) and capacitances were also measured for this device, Ron × Qg and Ron × Qgd was calculated to be 17600 mΩ•nC and 4290 mΩ•nC. At the same time, the dynamic Ron was measured using pulse measurement for this device under the condition of Vds = 600 V, and the derivation of Ron wad less than 4%.

    摘要-----------------------------------------------------------------i Abstract------------------------------------------------------------ii 目錄---------------------------------------------------------------iii 圖目錄---------------------------------------------------------------v 表目錄-------------------------------------------------------------vii 第一章---------------------------------------------------------------1 第二章---------------------------------------------------------------10第三章--------------------------------------------------------------34 第四章--------------------------------------------------------------67 參考文獻------------------------------------------------------------68

    [1] R. Cheung, Silicon Carbide Microelectromechanical Systems for Harsh Environments, Imperial College Press, 2006, p. 3.
    [2] A. Powell and L. Rowland, "SiC materials-progress, status, and potential roadblocks," Proceedings of the IEEE, vol. 90, no. 6, pp. 942 - 955, June 2002.
    [3] C. Zetterling, Process Technology for Silicon Carbide Devices, EMIS processing series IEEE, 2002.
    [4] B. Baliga, M.S. Adler, D.W. Oliver "Optimum semiconductors for power field effect transistors," IEEE Electron Device Letters, vol. 2, pp. 162 - 164, 1981.
    [5] J. Appels and H. Vaes, "High voltage thin layer devices (RESURF devices)," in 1979 International Electron Devices Meeting, Washington, DC, USA, 1979, pp. 238-241.
    [6] M. Imam, M. Quddus, J. Adams and Z. Hossain, "Efficacy of charge sharing in reshaping the surface electric field in high-voltage lateral RESURF devices," IEEE Transactions on Electron Devices, vol. 51, no. 1, pp. 141 - 148, 7 Jan. 2004 .
    [7] H. Vaes and J. Appels, "High voltage, high current lateral devices," in 1980 International Electron Devices Meeting, Washington, DC, USA, USA, 1980, pp. 87-90.
    [8] B. J. Baliga, Fundamentals of Power Semiconductor Devices, Springer Science + Business Media, LLC, 2008, p. 133.
    [9] F.C. Hsu and H.R. Grinolds, “Structure-enhanced MOSFET degradation due to hot-electron injection,” IEEE Electron Device Letters, vol. 5, no. 3, pp. 71-74, 1984..
    [10] P. Moens, G.V. den bosch, G. Groeseneken,” Hot-carrier degradation phenomena in lateral and vertical DMOS transistors,” IEEE Trans. Electron Devices, vol. 51, no. 4, pp. 623-628, 2004.
    [11] C.M. Hu, C. Tam, F.C. Hsu, P.K. Ko, T.Y. Chan, K.W. Terrill, “Hot-electron-induced MOSFET degradation model, monitor, and improvement,” IEEE Journal of Solid-State Circuits, vol. 20, no. 1, pp. 295-305, 1985.
    [12] J.S. Brugler, P.G.A. Jespers, “Charge pumping in MOS devices,” IEEE Trans. Electron Devices, vol. 16, no.3, pp. 297-302, 1969
    [13] A. Salinaro et al, "Charge pumping measurements on differently passivated lateral 4H-SiC MOSFETs," IEEE Trans. Electron Devices, vol. 62, no.1, pp. 155-163, Jan. 2015
    [14] D. Okamoto, H. Yano, T. Hatayama, Y. Uraoka, and T. Fuyuki, “Analysis of anomalous charge-pumping characteristics on 4H-SiC MOSFETs,” IEEE Trans. Electron Devices, vol. 55, no. 8, pp. 2013–2020, Aug. 2008.
    [15] S.K. Cheng, et al, “A Novel 700V Deep Trench Isolated Double RESURF LDMOS with P-sink Layer,” in Proc. 29th Int. Symp. Power Semiconductor Devices and ICs, pp. 323-326, Sapporo, Japan, July 2017.
    [16] G. Pobegen, T. Aichinger, A. Salinaro, and T. Grasser, “Impact of hot carrier degradation and positive bias stress on lateral 4H-SiC nMOSFETs”, Materials Science Forum, vol. 778-780, pp. 959–962, 2014.
    [17] Chih-Chang Cheng, K.C. Tu, Tahui Wang, T.H. Hsieh, J.T. Tzeng, Y.C. Jong, R.S. Liou, Sam C. Pan, and S.L. Hsu, "Investigation of Hot Carrier Degradation Modes in LDMO5 by Using a Novel Three-Region Charge Pumping Technque," IEEE International Reliability Physics Symposium (IRPS), pp.334-337, 2006..
    [18] M. Noborio, J. Suda, and T. Kimoto, “4H-SiC lateral double RESURF MOSFETs with low on resistance,” IEEE Trans. Electron Devices, vol. 54, no. 5, pp. 1216–1223, May 2007.
    [19] J. Weiße, C. Matthus, H. Schlichting, H. Mitlehner, T. Erlbacher, “ RESURF n-LDMOS Transistor for Advanced Integrated Circuits in 4H-SiC,” IEEE Transactions on Electron Devices, vol. 67, pp. 3278-3284, July 2020.
    [20] M. Noborio, J. Suda, and T. Kimoto, “Improved performance of 4HSiC double reduced surface field metal–oxide–semiconductor field-effect transistors by increasing RESURF doses,” Appl. Phys. Express, vol. 1, no. 10, p. 101 403, 2008.

    QR CODE