簡易檢索 / 詳目顯示

研究生: 郭敦詠
Kuo, Duen-Yung
論文名稱: 具氣體渦漩腔之微噴嘴設計與性能測試
Design and Performance Analysis of Novel Micro-Atomizers Assisted with Air Swirler
指導教授: 陳理定
Chen, Li-Ting
楊鏡堂
Yang, Jing-Tang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 144
中文關鍵詞: 微噴嘴微機電製程氣體渦漩腔PIV
外文關鍵詞: micro-atomizer, MEMS fabrication, air swirler, PIV
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主旨為設計及製作具渦漩氣流之氣助式噴嘴,透過壓力渦漩式微噴嘴與氣體渦漩腔之結合,以渦漩氣流衝擊液相渦漩流場,形成雙渦漩作用,增加液氣介面間之剝離能力,以提昇噴嘴之霧化效果。應用微機電製程技術製作具高深寬比結構之微噴嘴,達到縮小幾何尺寸及降低霧化粒徑之目的。實驗部分包括噴嘴性能測試及流場觀測,透過流量量測可計算噴嘴流數(flow number)及噴射係數(discharge coefficient),藉此參數推估噴嘴之性能,流場觀測則利用雷射系統及光學鏡組產生雷射光頁使流場可視化,高速攝影機記錄影像,分析流場結構及變化;運用粒子顯像測速儀(Particle Imaging Velocimetry, PIV)計算霧化液滴之速度向量。結果顯示:渦漩氣流作用前後流場結構差異在於噴霧錐角及中空結構的改變,氣體流速之增加拓展噴霧之錐角,且流場中心可觀察到低壓核心之生成,核心結構隨氣流之加速愈顯清晰完整,表示流場之渦漩強度增強,液氣間之相對速度提高,有利於液體碎化。此外,流場之縱切面速度分佈呈“W”形,邊界層上具最大速度峰值,隨氣體流速之增加,軸向速度亦增強;橫截面之速度向量場顯示流場有反轉現象,推斷液相流場之切線速度介於1.7~3.4 m/s。以上實驗結果說明氣體渦漩腔之設計對液體霧化有顯著之成效,證實壓力渦漩式噴嘴結合氣體渦漩腔之設計理念可提昇噴嘴之霧化能力。


    The objective of this study is to design and fabricate the micro-atomizers assisted with the air swirler. By combining the pressure-swirl type atomizer and the air swirler, the swirling air makes great impact on the liquid swirl of spray. Double-swirl interaction is active to enhance the ability of disintegration between air and liquid, achieving the goal of fine atomization. MEMS technique is applied to fabricate the micro-atomizer characterized by high-aspect ratio structure which scales down the size of geometry and subsequently reduces the mean droplet size. In experiments, the performance test of the micro-atomizer and flow visualization have been carried out. Through measuring the flow rate of injection, performance of the micro-atomizer is evaluated via flow number and discharge coefficient. For analyzing the structure and the development of flow field, the spray is visualized by laser sheet illumination and high-speed camera recording; particle imaging velocimetry (PIV) is also manipulated to study the velocity field. The results show that the flow field caused variation in spray angle and hollow cone structure before and after the swirling air acts on spray. Spray angle expanded with increasing the air velocity. Also, vortex core was observed in the center of flow field and the vorticity increased with increasing the air velocity. It means that the strength of liquid swirl and the relative velocity between liquid and air increased and, therefore, are beneficial to atomize liquid. In addition, the velocity field across spray on the vertical face has “w” profile distribution, and the peak value occurs on the boundary layer. Accelerating the air velocity raises the axial velocity of spray as well; the vector plot of flow field indicates that the flow reversal occurred, indicating that the tangential velocity of spray is between 1.7 to 3.4 m/s. The experimental results show that the air swirler indeed has great effects on liquid atomization, and it proves the design concept of combining the pressure-swirl atomizer and the air swirler for better quality of atomization.

    摘 要 ii Abstract iii 誌 謝 iv 目 錄 v 圖表目錄 viii 符號說明 xiv 第一章 前言1 第二章 文獻回顧與分析4 2-1 霧化機制與噴霧特性5 2.1.1霧化機制5 2.1.2噴霧特性9 2.2噴嘴型式之設計研究12 2.2.1壓力渦旋式噴嘴之設計研究12 2.2.2 氣助式噴嘴之設計研究15 2-3 微噴嘴之設計研究17 2-4 液滴粒徑與速度診測之技術19 第三章 研究方法23 3-1噴嘴之研製24 3-1.1微渦漩腔之設計24 3-1.2具氣體渦漩腔之噴嘴載具設計25 3-1.3 LIGA-Like製程30 3-2 噴霧流場觀測31 3-3 霧化流場速度量測33 3-3.1 粒子顯像測速儀原理34 3-4 實驗設備36 3-4.1 雷射系統36 3-4.2 掃描式電子顯微鏡SEM36 3-4.3 表面干涉儀37 3-4.4 高速攝影機37 3-4.5 電子天平38 3-4.6 燃油供應系統38 3-4.7 高壓氣體供應系統39 第四章 初步結果與未來展望41 4-1微噴嘴製造之檢視42 4-1.1 SEM影像42 4-1.2表面粗糙度分析43 4-2噴嘴流量量測48 4-2.1噴嘴流數(Flow Number)及噴射係數(Discharge coeffiecient)之計算49 4-3噴霧流場可視化52 4-3.1影像觀測52 4-3.2噴霧錐角分析53 4-3.2.1噴孔長度對噴霧錐角的影響54 4-3.2.2渦漩氣流對噴霧錐角的影響57 4-3.1噴霧中空結構分析65 4-3.1.1噴孔長度對中空結構的影響65 4-3.1.2渦漩氣流對中空結構的影響65 4-4 PIV速度向量場計算79 4-4.1噴霧流場之縱切面速度向量場計算79 4-4.2噴霧流場之橫切面速度向量場計算107 第五章 結論與未來展望135 5-1 結論135 5-2 未來展望136 5-3 預期貢獻136 參考文獻138

    Alajbegovic, A., Mesester, G., Greif, D., and Basara, B., 2002, “Three Phase Cavitating Flows in High-Pressure Swirl Injectors,” Experimental Thermal and Fluid Science, Vol. 26, pp. 667-681.

    Bachalo, W. D., and Houser, M, J., 1984, “ Phase/Doppler Spray Analyzer for Simultaneous Measurements of Drop Size and Velocity Distributions,” Optic Engineering, Vol. 23, pp. 583-590.

    Baik, S., Blanchard, J. P., and Corradini, M. L., 2003, “Development of Micro-Diesel Injector Nozzles via Microelectromechanical Systems Technology and Effects on Spray Characteristics,” Journal of Engineering for Gas Turbines and Power, Vol. 125, pp.427-434.

    Ballester, J., and Dopazo, C., 1994, “Discharge Coefficient and Spray Angle Measurements for Small Pressure-Swirl Nozzles,” Atomization and Sprays, Vol. 4, pp. 351-367.

    Chryssakis, C. A., 2002, “Modeling Gasoline Sprays Emerging from High-Pressure Swirl Injectors for DISI Engines,” M.S. thesis, Dept. of Mechanical Engineering, Michigan University, MI.

    Couto, H. S., Carvalho Jr., J. A., and Bastos-Netto, D., 1997, “Theoretical Formulation for Sauter Mean Diameter of Pressure-Swirl Atomizers,” Journal of Propulsion and Power, Vol. 13, No. 5, pp. 691-696.

    Dash, S. K., Halder, M. R., Peric, M., and Som, S. K., 2001, “Formation of Air Core in Nozzles With Tangential Entry,” Journal of Fluids Engineering, Vol. 123, pp. 829-835.

    Datta, A., and Som, S. K., 2000, “Numerical Prediction of Air Core Diameter, Coefficient of Discharge and Spray Cone Angle of a Swirl Spray pressure nozzle,” International Journal of Heat and Fluid Flow, Vol. 21, pp. 412-419.

    Eroglu, H., and Chigier, N., 1992, “Wave Characteristics of Liquid Sheets with Impinging Air Jets,” Atomization and Sprays, Vol. 2, pp. 121-135.

    Faeth, G. M., and Hsiang, L. P., 1995, “Structure and Breakup Properties of Sprays,” Journal of Multiphase Flow, Vol. 21, pp. 99-127.

    Fraser, R. P., and Eisenklam, P., 1953, “Research into the Performance of Atomizers for Liquids,” J. Imp. Coll. Chem. Eng. Soc., Vol. 7, pp. 52-68.

    Haenlein, A., 1932, “Disintegration of a Liquid Jet”, NACA TN, pp. 659

    Halder, M. R., Dash, S. K., and Som, S. K., 2002, “Initiation of Air Core in a Simplex Nozzle and the Effects of Operating and Geometrical Parameters on its Shape and Size,” Experimental Thermal and Fluid Science, Vol. 26, pp. 871–878.

    Han, Z., Parrish, S., Farrell, P. V., and Reitz, R. D., 1997, ”Modeling Atomization Processes of Pressure Swirl Hollow-Cone Fuel Sprays,” Atomization and Sprays, Vol. 7, pp. 663-684.

    Hautman, D. J., 1993, “Spray Characterization of Liquid/Gas Coaxial Injectors with the Center Liquid Swirled,” Atomization and Sprays, Vol. 3, pp. 373-387.

    Hopfinger, E. J., and Lasheras J. C., 1996, “Explosive Breakup of a Liquid Jet by a Swirling Coaxial Gas Jet,” Phys. Fluids, Vol. 8, pp. 1696-1698.

    Ismailov, M. M., Obokata, T., Kobayashi, K., and Polayev, V. M., 1999, “LDA/PDA Measurements of Instantaneous Characteristics in High Pressure Fuel Injection and Swirl Spray,” Experiments in Fluids, Vol. 27, pp. 1-11.

    Jeng, S. M., and Jog, M. A., 1998, “Computational and Experimental Study of Liquid Sheet Emanating from Simplex Fuel Nozzle,” AIAA Journal, Vol. 36, No. 2, pp.201-207.

    Kbavkin, Y., 2002, “Secondary Drop Breakup in Swirl Atomizers,” Atomization and Sprays, Vol. 12, pp. 615-627.

    Kim, K. S., and Kim, S. S., 1994, “Spray Characteristics of an Air-Assisted Fuel Injector for Two-Stroke Direct-Injection Gasoline Engines,” Atomization and Sprays, Vol. 4, pp. 501-521.

    Lai, W. H., Yang, K. H., Hong, C. H., and Wang, M. R., 1996, “Droplet Transport In Simplex and Air-Assisted Sprays,” Atomization and Sprays, Vol. 6, pp. 27-49.

    Lee, J. G., and Chen, L. D., 1991, “Linear Stability Analysis of Gas-Liquid Interface,” AIAA Journal, Vol. 29, No. 10, pp. 1589-1595

    Lefebvre, A. H., Atomization and Sprays, Hemisphere Publishing Corporation, New York, 1989, Chapter 1-7.

    Liao, Y., Jeng, S. M., Jog, M. A., and Benjamin, M. A., 2000, “The Effect of Air Swirl Profile on the Instability of a Viscous Liquid Jet,” J. Fluid Mech., Vol. 424, pp. 1-20.

    Liao, Y., Jeng, S. M., and Jog, M. A., 2000, “Instability of an Annular Liquid Sheet Surrounded by Swirling Airstreams,” AIAA Journal, Vol. 38, No. 3, pp.453-460

    Liao, Y., Sakman, A. T., Jeng, S. M., Jog, M. A., and Benjamin, M. A., 1999, “A Comprehensive Model to Predict Simplex Atomizer Performanec,” Journal of Engineering for Gas Turbines and Power, Vol. 121, pp. 285-294.

    Lin, S. P., and Reitz, R. D., 1998, “Drop and Spray Formation From A Liquid Jet,” Annu. Rev. Fluid Mech., Vol. 30, pp. 85-105.

    Nonnenmacher, S. and Piesche, M., 2000, “Design of Hollow Cone Pressure Swirl Nozzles to Atomize Newtonian Fluids,” Chemical Engineering Science, Vol. 55, pp. 4339-4348.

    Rajan, N., Mehregany, M., Zorman, C. A., Stefanescu, S., and Kicher, T. P., 1999, “Fabrication and Testing of Micromachined Silicon Carbide and Nickel Fuel Atomizers for Gas Turbine Engines,” Journal of Microelectromechanical Systems, Vol. 8, pp. 251-257.

    Rajan, N., Zorman, C., Mehregany, M., DeAnna, R., and Harvey, R., 1997, “3C-Sic Coating of Silicon Micromachined Atomizers,” 0-7803-3744-1/97, 1997 IEEE.

    Rizk, N. K., and Lefebvre, A. H., 1984, “Internal Flow Characteristics of Simplex Swirl Atomizers,” AIAA-84-0124.

    Rottenkolber, G., Gindele, J., Raposo, K., Dullenkopf, K., Hentschel, W., Wittig, S., Spicher, U., and Merzkirch, W., 2001, “Spray Analysis of a Gasoline Direct Injector by Means of Two-Phase PIV,” Experiments in Fluids, Vol. 32, , pp. 710-721.

    Rottenkolber, G., Meier, R., Schäfer, O., Wachter, S., Dullenkopf, K., and Wittig, S., 2001, “Combined Fluorescence LDV (FLDV) and PDA Technique for Non-ambiguous Two Phase Measurements Inside the Spray of a SI-Engine,” Particle & Particle Systems Characterization, Vol. 18, No.4, pp. 216-225.

    Tzeng, P., Liu C., and Chu, Y., 2004, “Numerical Visualization of Swirling Flows in Macrolaminated Atomizers,” Journal of Flow Visualization and Image Processing, Vol. 11, pp. 89-108.

    van de Hulst, H. C., 1957, Light Scattering by Small Particles, Dover, New York.

    Varga, C. M., Lasheras, J. C., and Hopfinger, E. J., 2003, “Initial Breakup of a Small-Diameter Liquid Jet by a High-Speed Gas Stream,” J. Fluid Mech., Vol. 497, pp. 405–434.

    Wigley, G., Goodwin, M., Pitcher, G., and Blondel, D., 2004, “Imaging and PDA Analysis of a GDI Spray in the Near-Nozzle Region,” Experiments in Fluids, Vol. 36, pp. 565-574.

    Yang, J. T., Huang, K. J., and Chen, A. C., 2004, “Microfabrication and Laser Diagnosis of Pressure-Swirl Atomizers,” J. Microelectromechanical Systems, Vol. 13, pp. 843-850.

    陳建安, 1998, 二相紊流於背向階梯後之混合機制, 國立清華大學動力機械工程學系博士論文.

    楊士弘, 2002, 微型噴嘴噴霧特性與幾何參數之研究, 國立清華大學動力機械工程學系碩士論文.

    陳琮瑜, 2003, 雙相流細微噴嘴之微製程分析與雷射診斷, 國立清華大學動力機械工程學系碩士論文.

    王覺寬, 林天柱, 沈逸俊, 2005, “具渦漩效應之氣助式霧化器設計參數研究,”中華民國燃燒學會第十五屆學術研討會, 台灣, 嘉義.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE