研究生: |
蕭義勳 Shiao, Yi-Syun |
---|---|
論文名稱: |
適體修飾之金奈米粒子於癌症標靶治療之應用 Aptamer Functionalized Gold Nanoparticles for Targeted Cancer Therapy |
指導教授: | 黃郁棻 |
口試委員: |
孫毓璋
黃志清 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2011 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 71 |
中文關鍵詞: | 適體 、金奈米粒子 、癌症治療 |
外文關鍵詞: | Aptamer, Gold nanoparticles, Cancer therapy |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要利用金奈米粒子 (Gold nanoparticle, Au NP) 結合一雙股結構之核酸適體ds(sgc8c),開發成新穎之奈米藥物載體,應用於癌細胞的標靶治療。ds(sgc8c)中的適體結構 (sgc8c aptamer),可用來辨識跨膜蛋白 (Transmembrane protein)─protein tyrosine kinase 7 (PTK7),此蛋白在急性淋巴型T細胞白血病 (Acute lymphoblastic leukemia, ALL) 的癌細胞株CCRF-CEM細胞膜表面,有高度的表現量。此外由適體結構延伸而出的雙股核酸 (DNA) 序列,含有連續且重複的CG鹼基對,能嵌合 (Intercalation) 數個化療藥物「小紅莓」(Doxorubicin) 分子。定量結果顯示,一顆粒徑為13奈米的金粒子表面,可修飾61 ± 10條雙股DNA,以及280 ± 23個Doxorubicin分子,具有良好的載藥效率。本研究開發的奈米藥物載體,能藉由適體與目標細胞進行專一性作用,降低抗癌藥物對非目標細胞的毒性;此藥物載體平台系統,亦可依據特定癌細胞株,搭配不同適體,應用於多種癌細胞之標靶治療。
1. Ferlay, J.; Shin, H.-R.; Bray, F.; Forman, D.; Mathers, C.; Parkin, D. M., Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. 2010; Vol. 127, p 2893-917.
2. Gu, Y. L., Spiritual Distress Experienced by Cancer Patients-Develop a Spiritual Care for Cancer Patients. TW. J. Hosp. Palliat. Care 2005, 10, 221-223.
3. Cortes, J. E.; Kantarjian, H. M., Acute Lymphoblastic Leukemia a Comprehensive Review with Emphasis on Biology and Therapy. Cancer 1995, 76, 2393-2417.
4. Pelissari, D. M.; Barbieri, F. E.; Wünsch Filho, V., Magnetic Fields and Acute Lymphoblastic Leukemia in Children: A Systematic Review of Case-Control Studies. Cad. Saude Publica 2009, 25, 441-452.
5. Kwon, M.; Yoon, C.-S.; Fitzpatrick, S.; Kassam, G.; Graham, K. S.; Young, M. K.; Waisman, D. M., p22 Is a Novel Plasminogen Fragment with Antiangiogenic Activity. Biochemistry (Mosc). 2001, 40, 13246-13253.
6. Larsen, A. K.; Escargueil, A. E.; Skladanowski, A., Catalytic Topoisomerase II Inhibitors in Cancer Therapy. Pharmacol. Ther. 2003, 99, 167-181.
7. Green, P. S.; Leeuwenburgh, C., Mitochondrial Dysfunction is an Early Indicator of Doxorubicin-induced Apoptosis. Biochim. Biophys 2002, 1588, 94-101.
8. Adiseshaiah, P. P.; Hall, J. B.; McNeil, S. E., Nanomaterial standards for efficacy and toxicity assessment. Wiley Interdiscip. Rev. Nanomed. Nanotechnol. 2010, 2, 99-112.
9. Cho, K.; Wang, X.; Nie, S.; Chen, Z.; Shin, D. M., Therapeutic Nanoparticles for Drug Delivery in Cancer. Clin. Cancer. Res. 2008, 14, 1310-1316.
10. Peer, D.; Karp, J. M.; Hong, S.; Farokhzad, O. C.; Margalit, R.; Langer, R., Nanocarriers as an Emerging Platform for Cancer Therapy. Nat. Nano. 2007, 2, 751-760.
11. Lu, J.; Owen, S. C.; Shoichet, M. S., Stability of Self-Assembled Polymeric Micelles in Serum. Macromolecules 2011, 44, 6002-6008.
12. Xie, J.; Lee, S.; Chen, X., Nanoparticle-Based Theranostic Agents. Adv. Drug Del. Rev. 2010, 62, 1064-1079.
13. Duguet, E.; Vasseur, S.; Mornet, S.; Devoisselle, J.-M., Magnetic Nanoparticles and Their Applications in Medicine. Nanomedicine 2006, 1, 157-168.
14. Zhang, L.; Yu, F.; Cole, A. J.; Chertok, B.; David, A. E.; Wang, J.; Yang, V. C., Gum Arabic-Coated Magnetic Nanoparticles for Potential Application in Simultaneous Magnetic Targeting and Tumor Imaging. AAPS J. 2009, 11, 693-9.
15. Smith, A. M.; Duan, H.; Mohs, A. M.; Nie, S., Bioconjugated Quantum Dots for in Vivo Molecular and Cellular Imaging. Adv. Drug Del. Rev. 2008, 60, 1226-1240.
16. Jana, N. R.; Earhart, C.; Ying, J. Y., Synthesis of Water-Soluble and Functionalized Nanoparticles by Silica Coating. Chem. Mater. 2007, 19, 5074-5082.
17. Vivero-Escoto, J. L.; Slowing, I. I.; Trewyn, B. G.; Lin, V. S. Y., Mesoporous Silica Nanoparticles for Intracellular Controlled Drug Delivery. Small 2010, 6, 1952-1967.
18. Li, B.; Du, Y.; Dong, S., DNA Based Gold Nanoparticles Colorimetric Sensors for Sensitive and Selective Detection of Ag(I) Ions. Anal. Chim. Acta 2009, 644, 78-82.
19. Geso, M., Gold Nanoparticles: a new X-ray Contrast Agent. Br. J. Radiol. 2007, 80, 64-65.
20. Kim, D.; Park, S.; Lee, J. H.; Jeong, Y. Y.; Jon, S., Antibiofouling Polymer-Coated Gold Nanoparticles as a Contrast Agent for in Vivo X-ray Computed Tomography Imaging. J. Am. Chem. Soc. 2007, 129, 7661-7665.
21. Qian, X.; Peng, X.-H.; Ansari, D. O.; Yin-Goen, Q.; Chen, G. Z.; Shin, D. M.; Yang, L.; Young, A. N.; Wang, M. D.; Nie, S., In Vivo Tumor Targeting and Spectroscopic Detection with Surface-Enhanced Raman Nanoparticle Tags. Nat. Biotech. 2008, 26, 83-90.
22. Park, H.; Yang, J.; Lee, J.; Haam, S.; Choi, I.-H.; Yoo, K.-H., Multifunctional Nanoparticles for Combined Doxorubicin and Photothermal Treatments. ACS Nano 2009, 3, 2919-2926.
23. James, F. H.; et al., The use of Gold Nanoparticles to Enhance Radiotherapy in Mice. Phys. Med. Biol. 2004, 49, N309.
24. Carter, J. D.; Cheng, N. N.; Qu, Y.; Suarez, G. D.; Guo, T., Nanoscale Energy Deposition by X-ray Absorbing Nanostructures. J. Phys. Chem. B 2007, 111, 11622-11625.
25. Massich, M. D.; Giljohann, D. A.; Schmucker, A. L.; Patel, P. C.; Mirkin, C. A., Cellular Response of Polyvalent Oligonucleotide-Gold Nanoparticle Conjugates. ACS Nano 2010, 4, 5641-5646.
26. Alkilany, A.; Murphy, C., Toxicity and Cellular Uptake of Gold Nanoparticles: What We Have Learned so Far. J. Nanopart. Res. 2010, 12, 2313-2333.
27. Dey, A. K.; Khati, M.; Tang, M.; Wyatt, R.; Lea, S. M.; James, W., An Aptamer That Neutralizes R5 Strains of Human Immunodeficiency Virus Type 1 Blocks gp120-CCR5 Interaction. J. Virol. 2005, 79, 13806-13810.
28. Giljohann, D. A.; Seferos, D. S.; Daniel, W. L.; Massich, M. D.; Patel, P. C.; Mirkin, C. A., Gold Nanoparticles for Biology and Medicine. Angew. Chem. Int. Ed. 2010, 49, 3280-3294.
29. Huang, X.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A., Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods. J. Am. Chem. Soc. 2006, 128, 2115-2120.
30. Gopinath, S., Methods Developed for SELEX. Anal. Bioanal. Chem. 2007, 387, 171-182.
31. Shangguan, D.; Li, Y.; Tang, Z.; Cao, Z. C.; Chen, H. W.; Mallikaratchy, P.; Sefah, K.; Yang, C. J.; Tan, W., Aptamers Evolved from Live Cells as Effective Molecular Probes for Cancer Study. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 11838-11843.
32. Thiel, K. W.; Giangrande, P. H., Therapeutic Applications of DNA and RNA Aptamers. Oligonucleotides 2009, 19, 209-222.
33. Group, M. D. R. S., A Phase II Randomized Double-Masked Trial of Pegaptanib, an Anti-Vascular Endothelial Growth Factor Aptamer, for Diabetic Macular Edema. Ophthalmol. 2005, 112, 1747-1757.
34. Kim, D.; Jeong, Y. Y.; Jon, S., A Drug-Loaded Aptamer−Gold Nanoparticle Bioconjugate for Combined CT Imaging and Therapy of Prostate Cancer. ACS Nano 2010, 4, 3689-3696.
35. Xu, Y.; Cheng, G.; He, P.; Fang, Y., A Review: Electrochemical Aptasensors with Various Detection Strategies. Electroanalysis 2009, 21, 1251-1259.
36. Lee, J.-O.; So, H.-M.; Jeon, E.-K.; Chang, H.; Won, K.; Kim, Y., Aptamers as Molecular Recognition Elements for Electrical Nanobiosensors. Anal. Bioanal. Chem. 2008, 390, 1023-1032.
37. Pendergrast, P. S.; Marsh, H. N.; Grate, D.; Healy, J. M.; Stanton, M., Nucleic Acid Aptamers for Target Validation and Therapeutic Applications. J Biomol Tech. 2005, 16, 224-34.
38. Carter, P. J., Potent Antibody Therapeutics by Design. Nat. Rev. Immunol. 2006, 6, 343-357.
39. Matsuoka, Y.; Onodera, T.; Kojima, T.; Chang, Y.; Chen, W.-Y.; Imanaka, T.; Fukushima, H.; Higuchi, A., Novel Enzymatic Properties of DNA-Pt Complexes. Biomacromolecules 2007, 8, 2684-2688.
40. Macanovic, M.; Lachmann, P. J., Measurement of Deoxyribonuclease I (DNase) in the Serum and Urine of Systemic lupus Erythematosus (SLE)-Prone NZB/NZW Mice by a New Radial Enzyme Diffusion Assay. Clin. Exp. Immunol. 1997, 108, 220-226.
41. Murphy, E.; Steenbergen, C., Ion Transport and Energetics During Cell Death and Protection. Physiol. 2008, 23, 115-123.
42. Lytton-Jean, A. K. R.; Mirkin, C. A., A Thermodynamic Investigation into the Binding Properties of DNA Functionalized Gold Nanoparticle Probes and Molecular Fluorophore Probes. J. Am. Chem. Soc. 2005, 127, 12754-12755.
43. Seferos, D. S.; Prigodich, A. E.; Giljohann, D. A.; Patel, P. C.; Mirkin, C. A., Polyvalent DNA Nanoparticle Conjugates Stabilize Nucleic Acids. Nano Lett. 2008, 9, 308-311.
44. Seferos, D. S.; Giljohann, D. A.; Hill, H. D.; Prigodich, A. E.; Mirkin, C. A., Nano-Flares: Probes for Transfection and mRNA Detection in Living Cells. J. Am. Chem. Soc. 2007, 129, 15477-15479.
45. Zheng, D.; Seferos, D. S.; Giljohann, D. A.; Patel, P. C.; Mirkin, C. A., Aptamer Nano-flares for Molecular Detection in Living Cells. Nano Lett. 2009, 9, 3258-3261.
46. Han, G.; You, C.-C.; Kim, B.-j.; Turingan, R. S.; Forbes, N. S.; Martin, C. T.; Rotello, V. M., Light-Regulated Release of DNA and Its Delivery to Nuclei by Means of Photolabile Gold Nanoparticles. Angew. Chem. 2006, 118, 3237-3241.
47. Guo, S.; Huang, Y.; Jiang, Q.; Sun, Y.; Deng, L.; Liang, Z.; Du, Q.; Xing, J.; Zhao, Y.; Wang, P. C.; Dong, A.; Liang, X.-J., Enhanced Gene Delivery and siRNA Silencing by Gold Nanoparticles Coated with Charge-Reversal Polyelectrolyte. ACS Nano 2010, 4, 5505-5511.
48. Bagalkot, V.; Zhang, L.; Levy-Nissenbaum, E.; Jon, S.; Kantoff, P. W.; Langer, R.; Farokhzad, O. C., Quantum Dot−Aptamer Conjugates for Synchronous Cancer Imaging, Therapy, and Sensing of Drug Delivery Based on Bi-Fluorescence Resonance Energy Transfer. Nano Lett. 2007, 7, 3065-3070.
49. Wang, A. Z.; Bagalkot, V.; Vasilliou, C. C.; Gu, F.; Alexis, F.; Zhang, L.; Shaikh, M.; Yuet, K.; Cima, M. J.; Langer, R.; Kantoff, P. W.; Bander, N. H.; Jon, S.; Farokhzad, O. C., Superparamagnetic Iron Oxide Nanoparticle–Aptamer Bioconjugates for Combined Prostate Cancer Imaging and Therapy. ChemMedChem 2008, 3, 1311-1315.
50. Frederick, C. A.; Williams, L. D.; Ughetto, G.; Van der Marel, G. A.; Van Boom, J. H.; Rich, A.; Wang, A. H. J., Structural Comparison of Anticancer Drug-DNA Complexes: Adriamycin and Daunomycin. Biochemistry (Mosc). 1990, 29, 2538-2549.
51. Chaires, J. B.; Herrera, J. E.; Waring, M. J., Preferential Binding of Daunomycin to 5'TACG and 5'TAGC Sequences Revealed by Footprinting Titration Experiments. Biochemistry (Mosc). 1990, 29, 6145-6153.
52. Kellogg, G. E.; Scarsdale, J. N.; Fornari, F. A., Identification and Hydropathic Characterization of Structural Features Affecting Sequence Specificity for Doxorubicin Intercalation into DNA Double-Stranded Polynucleotides. Nucleic Acids Res. 1998, 26, 4721-4732.
53. Bagalkot, V.; Farokhzad, O. C.; Langer, R.; Jon, S., An Aptamer–Doxorubicin Physical Conjugate as a Novel Targeted Drug-Delivery Platform. Angew. Chem. Int. Ed. 2006, 45, 8149-8152.
54. Hurst, S. J.; Lytton-Jean, A. K. R.; Mirkin, C. A., Maximizing DNA Loading on a Range of Gold Nanoparticle Sizes. Anal. Chem. 2006, 78, 8313-8318.
55. Huang, Y.-F.; Shangguan, D.; Liu, H.; Phillips, J. A.; Zhang, X.; Chen, Y.; Tan, W., Molecular Assembly of an Aptamer–Drug Conjugate for Targeted Drug Delivery to Tumor Cells. ChemBioChem 2009, 10, 862-868.
56. Huang, Y.-F.; Lin, Y.-W.; Lin, Z.-H.; Chang, H.-T., Aptamer-Modified Gold Nanoparticles for Targeting Breast Cancer Cells Through Light Scattering. J. Nanopart. Res. 2009, 11, 775-783.
57. Shangguan, D.; Tang, Z.; Mallikaratchy, P.; Xiao, Z.; Tan, W., Optimization and Modifications of Aptamers Selected from Live Cancer Cell Lines. ChemBioChem 2007, 8, 603-606.
58. Huo, F.; Lytton-Jean, A. K. R.; Mirkin, C. A., Asymmetric Functionalization of Nanoparticles Based on Thermally Addressable DNA Interconnects. Adv. Mater. 2006, 18, 2304-2306.
59. Hamid, R.; Rotshteyn, Y.; Rabadi, L.; Parikh, R.; Bullock, P., Comparison of Alamar Blue and MTT Assays for High Through-Put Screening. Toxicol. In Vitro 2004, 18, 703-710.
60. Hurst, S. J.; Han, M. S.; Lytton-Jean, A. K. R.; Mirkin, C. A., Screening the Sequence Selectivity of DNA-Binding Molecules Using a Gold Nanoparticle-Based Colorimetric Approach. Anal. Chem. 2007, 79, 7201-7205.
61. Goutelle, S.; Maurin, M.; Rougier, F.; Barbaut, X.; Bourguignon, L.; Ducher, M.; Maire, P., The Hill Equation: A Review of its Capabilities in Pharmacological Modelling. Fundam. Clin. Pharmacol. 2008, 22, 633-648.
62. Kim, J.; Hu, J.; Sollie, R. S.; Easley, C. J., Improvement of Sensitivity and Dynamic Range in Proximity Ligation Assays by Asymmetric Connector Hybridization. Anal. Chem. 2010, 82, 6976-6982.
63. Weiss, J., The Hill Equation Revisited: Uses and Misuses. FASEB J. 1997, 11, 835-841.
64. Rosi, N. L.; Giljohann, D. A.; Thaxton, C. S.; Lytton-Jean, A. K. R.; Han, M. S.; Mirkin, C. A., Oligonucleotide-Modified Gold Nanoparticles for Intracellular Gene Regulation. Science 2006, 312, 1027-1030.
65. Gore, M. R.; Szalai, V. A.; Ropp, P. A.; Yang, I. V.; Silverman, J. S.; Thorp, H. H., Detection of Attomole Quantitites of DNA Targets on Gold Microelectrodes by Electrocatalytic Nucleobase Oxidation. Anal. Chem. 2003, 75, 6586-6592.
66. Prado-Gotor, R.; Grueso, E., A Kinetic Study of the Interaction of DNA with Gold Nanoparticles: Mechanistic aspects of the Interaction. PCCP 2011, 13, 1479-1489.
67. Schreiner, S. M.; Hatch, A. L.; Shudy, D. F.; Howard, D. R.; Howell, C.; Zhao, J.; Koelsch, P.; Zharnikov, M.; Petrovykh, D. Y.; Opdahl, A., Impact of DNA–Surface Interactions on the Stability of DNA Hybrids. Anal. Chem. 2011, 83, 4288-4295.
68. Bangar, M. A.; Shirale , D. J.; Purohit, H. J.; Chen, W.; Myung, N. V.; Mulchandani, A., Single Conducting Polymer Nanowire Based Sequence-Specific, Base-Pair-Length Dependant Label-free DNA Sensor. Electroanalysis 2011, 23, 371-379.
69. Hutter, E.; Pileni, M.-P., Detection of DNA Hybridization by Gold Nanoparticle Enhanced Transmission Surface Plasmon Resonance Spectroscopy. J. Phys. Chem. B 2003, 107, 6497-6499.
70. Hosta-Rigau, L.; Olmedo, I.; Arbiol, J.; Cruz, L. J.; Kogan, M. J.; Albericio, F., Multifunctionalized Gold Nanoparticles with Peptides Targeted to Gastrin-Releasing Peptide Receptor of a Tumor Cell Line. Bioconjugate Chem. 2010, 21, 1070-1078.
71. Tan, Y. N.; Su, X.; Liu, E. T.; Thomsen, J. S., Cellular Response of Polyvalent Oligonucleotide-Gold Nanoparticle Conjugates. Anal. Chem. 2010, 82, 2759-2765.
72. Das, J.; Huh, C.-H.; Kwon, K.; Park, S.; Jon, S.; Kim, K.; Yang, H., Comparison of the Nonspecific Binding of DNA-Conjugated Gold Nanoparticles between Polymeric and Monomeric Self-Assembled Monolayers. Langmuir 2008, 25, 235-241.
73. Kleeberger, L.; Röttinger, E. M., Effect of pH and Moderate Hyperthermia on Doxorubicin, Epirubicin and Aclacinomycin A Cytotoxicity for Chinese Hamster Ovary Cells. Cancer Chemother. Pharmacol. 1993, 33, 144-148.
74. Chithrani, B. D.; Ghazani, A. A.; Chan, W. C. W., Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells. Nano Lett. 2006, 6, 662-668.
75. Shah, N. B.; Dong, J.; Bischof, J. C., Cellular Uptake and Nanoscale Localization of Gold Nanoparticles in Cancer Using Label-Free Confocal Raman Microscopy. Mol. Pharm. 2010, 8, 176-184.
76. Huang, Y.-F.; Chang, H.-T.; Tan, W., Cancer Cell Targeting Using Multiple Aptamers Conjugated on Nanorods. Anal. Chem. 2008, 80, 567-572.
77. Ignatova, M. G.; Manolova, N. E.; Toshkova, R. A.; Rashkov, I. B.; Gardeva, E. G.; Yossifova, L. S.; Alexandrov, M. T., Electrospun Nanofibrous Mats Containing Quaternized Chitosan and Polylactide with In Vitro Antitumor Activity against HeLa Cells. Biomacromolecules 2010, 11, 1633-1645.
78. Hong, R.; Han, G.; Fernández, J. M.; Kim, B.-j.; Forbes, N. S.; Rotello, V. M., Glutathione-Mediated Delivery and Release Using Monolayer Protected Nanoparticle Carriers. J. Am. Chem. Soc. 2006, 128, 1078-1079.
79. Wang, F.; Wang, Y.-C.; Dou, S.; Xiong, M.-H.; Sun, T.-M.; Wang, J., Doxorubicin-Tethered Responsive Gold Nanoparticles Facilitate Intracellular Drug Delivery for Overcoming Multidrug Resistance in Cancer Cells. ACS Nano 2011, 5, 3679-3692.