簡易檢索 / 詳目顯示

研究生: 王毓萱
論文名稱: SrTiO3/TiO2奈米複合材料應用於染料敏化太陽能電池之研究
The Study of SrTiO3/TiO2 Hybridstructure as Photoanode in Dye-Sensitized Solar Cell
指導教授: 李紫原
裘性天
口試委員: 裘性天
徐文光
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 70
中文關鍵詞: 染料敏化太陽能電池二氧化鈦複合材料異質接面
外文關鍵詞: dye-sensitized solar cell, heterostructure, TiO2, SrTiO3
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在染料敏化太陽能電池(Dye-Sensitized Solar cells, DSSC)內部的各個反應界面中,電子的再結合反應為造成電池效率無法提升的主要原因之一。具有異質接面之複合材料,因其互相匹配之能帶位置,能有效幫助電子的傳遞,抑制電子的再結合反應,提高電池的轉換效率。本實驗利用TiO2(commercial anatase TiO2與P25)與Sr(OH)2,以水熱法在120˚C下反應不同時間,合成具有不同SrTiO3含量之SrTiO3/TiO2奈米粉末,並以此複合材料當做工作電極,應用於DSSC。在DSSC的表現上,開路電壓大幅提升,但短路電流卻下降,造成電池之轉換效率無法提升。雖然SrTiO3/TiO2可有效抑制電子的再結合,但因其具有較高之平帶電位,可能會影響電子注入的驅動力,減緩電子注入的速度,造成光電流無法提升。本實驗將近一步討論染料的吸附、電子注入效率與收集電子的能力,詳細探討影響DSSC表現之各種因素。


    In dye-sensitized solar cells (DSSC), the TiO2/dye/electrolyte interface affects the photoelectron conversion efficiency seriously because of the charge recombination reaction. In addition, hybrid semiconductor materials with match band potential are important in photoelectric applications result from suppressing photogenerated charge and hole recombination. Here, the SrTiO3/TiO2 nanocomposite was employed as the anode of a DSSC. The SrTiO3/TiO2 hybridstructure was synthesized by hydrothermal of TiO2 and Sr(OH)2 at 120°C for different reaction time. In the DSSC, the open circuit voltage increased while the short circuit photocurrent enormously decreased as SrTiO3 modified TiO2 was used as anode. Despite the suppression of charge recombination, the SrTiO3/TiO2 system could simultaneously impede the electron injection, which limited the short circuit photocurrent performance. The reaction details of light harvesting efficiency, charge injection efficiency and charge collection efficiency were studied

    第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 文獻回顧 3 2.1染料敏化太陽能電池之簡介 3 2.2影響染料敏化太陽能電池工作之要素 6 2.2.1染料吸收光的能力(LHE) 6 2.2.2電子注入效率(CIE) 7 2.2.3收集電子的效率(CCE) 8 2.3電化學交流阻抗 10 2.3.1 EIS原理 10 2.3.2 R_w與R_ct 12 2.4異質接面 15 第三章 實驗步驟 21 3.1 SrTiO3/TiO2複合材料之合成 21 3.2 SrTiO3/TiO2形貌與性質之鑑定 22 3.2.1成分與形貌之鑑定 22 3.2.2平帶電位(flat band)之量測 22 3.3染料敏化太陽能電池之製作 22 3.4染料敏化太陽能電池之量測 24 3.4.1光電轉換效率 24 3.4.2暗電流之量測 24 3.4.3 EIS之量測 25 3.4.4傅立葉轉換紅外光光譜量測 25 3.4.5染料吸附量之量測 25 3.4.6 Time-resolved Photoluminescence之量測 25 第四章 結果與討論 32 4.1 SrTiO3/TiO2之形貌與性質鑑定 32 4.1.1以commercial anatase nanopowder為反應物 32 4.1.2以P25為反應物 33 4.1.3反應機制 34 4.2平帶電位量測(flat band) 35 4.3染料敏化太陽能電池之應用 36 4.3.1以commercial anatase nanopowder為反應物 36 4.3.2以P25為反應物 37 4.4影響染料敏化太陽能電池轉換效率因素之探討 39 4.4.1染料吸收光的能力(LHE) 39 4.4.2電子注入效率(CIE) 39 4.4.3收集電子的效率(CCE) 42 第五章 結論 64

    [1] B.O’Regan, M. Grätzel, Nature 1991, 353, 737
    [2] M. Grätzel, Nature 2001, 414, 338
    [3] M. Grätzel, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2003, 4, 145
    [4] S. Y. Huang, G.Schlichthörl, A. J. Nozik, M. Grätzel, A. J. Frank, Journal of Physical Chemistry B 1997, 101, 2576
    [5] V. Thavasi, V. Renugopalakrishnan, R. Jose, S. Ramakrishna, Materials Science and Engineering R 2009 63, 81
    [6] M. Grätzel, Journal of Photochemistry and Photobiology A: Chemistry 2004, 164 , 3
    [7] R. Jose, V. Thavasi, S. Ramakrishna, Journal of the American Ceramic Society 2009, 92, 289
    [8] S. E. Koops, B. C. O’Regan, P. R. F. Barnes, J. R. Durrant, Journal of the American Chemical Society 2009,131,13
    [9] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humpbry-Baker, E. Miiller, P. Liska,
    N. Vlachopoulos, M. Gratzel, Journal of the American Chemical Society 1993, 115, 6382
    [10] M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, M. Grätzel, Journal of the American Chemical Society 2005,127,16835
    [11] R. Argazzi, N. Y. Murakami Iha, H. Zabri, F. Odobel, C. A. Bignozzi, Coordination Chemistry Reviews 2004, 248, 1299
    [12] Md. K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Grätzel, Journal of Physical Chemistry B 2003, 107, 8981
    [13] K. E. Lee, M. A. Gomez, S. Elouatik, G. P. Demopoulos, Langmuir 2010, 26(12), 9575
    [14] C. Pérez León, L. Kador, B. Peng, M. Thelakkat, Journal of Physical Chemistry B 2006, 110, 8723
    [15] C. Y. Chen, S. J. Wu, C. G. Wu, J. G. Chen, K. C. Ho, Angewandte Chemie International Edition 2006, 45, 5822
    [16] R. Kern, R. Sastrawan, J. Ferber, R. Stangl, J. Luther, Electrochimica Acta 2002, 47, 4213
    [17] Q. Wang, J. E. Moser, M. Grätzel, Journal of Physical Chemistry B 2005, 109, 14945
    [18] J. Bisquert, V. S. Vikhrenko, Journal of Physical Chemistry B 2004, 108,2313
    [19] L. Han, N. Koide, Y. Chiba, T. Mitate, Applied Physics Letters 2004, 84, 2433
    [20] J. Bisquert, Journal of Physical Chemistry B 2002, 106,325
    [21] M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata, S. Isoda, Journal of Physical Chemistry B 2006, 110,13874
    [22] A. Hauch, A. Georg, Electrochimica Acta 2001, 46, 3457
    [23] F. Fabregat-Santiago, J. Bisquert, G. G. Belmonte, G. Boschloo, A. Hagfeldt, Solar Energy Materials & Solar Cells 2005, 87, 117
    [24] F. Fabregat-Santiago, J. Bisquert, E. Palomares, L. Otero, D. Kuang, S. M. Zakeeruddin, M. Grätzel, Journal of Physical Chemistry C 2007, 111, 6550
    [25] Q. Wang, S. Ito, M. Grätzel, F. Fabregat-Santiago, I. Mora-Seró, J. Bisquert, T. Bessho, H. Imai, Journal of Physical Chemistry B 2006, 110, 25210
    [26] Z. Yang, T. Xu, S. Gao, U. Welp, W. K. Kwok, Journal of Physical Chemistry C 2010, 114,19151
    [27] G. Schlichtho1rl, N. G. Park, A. J. Frank, Journal of Physical Chemistry B 1999, 103, 782
    [28] K. Zhu, N. R. Neale, A. Miedaner, A. J. Frank, Nano Letters 2007, 7, 69
    [29] L. M. Peter, Journal of Physical Chemistry C 2007, 111, 6601
    [30] E. Barsoukov, J. R. Macdonald, A John Wiley & Sons, Inc., 2005
    [31] X. Lü, F. Huang, X. Mou, Y. Wang, F. Xu, Advanced Materials 2010,22, 3719
    [32] H. Cui, K. Dwight, S. Soled, A. Wold, Journal of Solid State Chemistry 1995, 115, 187
    [33] Z. Liu, D. D. Sun, P. Guo, J. O. Leckie, Nanoletters 2007, 7.1081
    [34] H. Xu, L. Zhang, Journal of Physical Chemistry C 2009, 113, 1785
    [35] W. Li, C. Liu, Y. Zhou, Y. Bai, X. Feng, Z. Yang, L. Lu, X. Lu, K. Y. Chan, Journal of Physical Chemistry C 2008, 112, 20539
    [36] S. J. Roh, R. S. Mane, S. K. Min, W. J. Lee, C. D. Lokhande, S. H. Han, Applied Physics Letters 2006, 89, 253512
    [37] Y. B. Tang, C. S. Lee, J. Xu, Z. T. Liu, Z. H. Chen, Z. He, Y. L. Cao, G. Yuan, H. Song, L. Chen, L. Luo, H. M. Cheng, W. J. Zhang, I. Bello, S. T. Lee, ACS Nano 2010, 4, 3482
    [38] H. S. Jung, J. K. Lee, M. Nastasi, Langmuir 2005, 21, 10332
    [39] S. G. Chen, S. Chappel, Y. Diamant, A. Zaban, Chemistry of Materials 2001, 13, 4629
    [40] V. Ganapathy, B. Karunagaran, S. W. Rhee, Journal of Power Sources 2010, 195, 5138
    [41] Y. Diamant, S. G. Chen, O. Melamed, A. Zaban, Journal of Physical Chemistry B 2003, 107, 1977
    [42] Y. Diamant, S. Chappel, S.G. Chen, O. Melamed, A. Zaban, Coordination Chemistry Reviews 2004, 148, 1271
    [43] J. Zhang, J. H. Bang, C. Tang, P. V. Kamat, ACS Nano 2010, 4 387
    [44] J. Ng, S. Xu, X. Zhang, H. Y. Yang, D. D. Sun, Advanced Functional Materials 2010, 20, 4287
    [45] X. Zhang, K. Huo, L. Hu, Z. Wu, P. K. Chu, Journal of the American Ceramic Society 2010, 93(9), 2771
    [46] F. Cardonand, W. P. Gomes, Journal of Physics D: Applied Physics 1978, 11, L63
    [47] A. Vittadini, A. Selloni, F. P. Rotzinger, M. Gra1tzel, Journal of Physical Chemistry B 2000, 104,1300-1306
    [48] W.D.Yang, Journal of Material Science 1990, 34, 3533 – 3544
    [49] T.P. Cao, Y.J. Li, C.H. Wang, C.L. Shao, Y.C. Liu, Langmuir 2011, 27, 2946–2952
    [50] M. Grätzel, Inorganic Chemistry 2005, 44, 20, 6841
    [51] G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, Nanoletters 2006, 6, 215
    [52] P. J. Cameron, L. M. Peter, Journal of Physical Chemistry B 2003, 107, 14394

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE