簡易檢索 / 詳目顯示

研究生: 華子恩
Tzu-en Hua
論文名稱: 花青螺造牙過程中矽沈積之研究
Silica Biomineralization in the radula of a limpet Notoacmea schrenckii (Gastropoda: Acmaeidae)
指導教授: 李家維
Chia-Wei Li
口試委員:
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生命科學系
Department of Life Sciences
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 46
中文關鍵詞: 花青螺齒舌矽沈積
外文關鍵詞: limpet, radula, silica, biomineralization
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 花青螺 (Notoacmea schrenckii) 常見生長於岩礁海岸的潮間帶,以矽及鐵質構成之齒舌刮取生長於岩石上的藻類為生。由於花青螺齒舌上不同發育階段的牙具有不同的礦化程度,因此成為研究生物礦物沈積過程之理想實驗材料。
    齒舌之造牙過程可由礦化程度之不同分為四個階段 :stage I 尚無礦物沈積發生,stage II時開始觀察到鐵的沈積,而進入stage III時牙齒礦化程度漸增,至stage IV時,齒舌即完全成熟。
    本研究利用光學顯微鏡、穿透式及掃描式電子顯微鏡所進行的形態觀察及元素分析顯示,在造牙過程的初期即有鐵的訊號出現在牙冠與牙基的交界處,而矽的訊號則早在stage I尚無任何可以肉眼辨識之礦物出現時即可在牙基部分測得。穿透式電子顯微影像亦顯示stage I階段,牙冠及牙基皆由有機質構成礦物沈積之骨架,此骨架在齒舌成熟過程中逐漸被礦物沈積包覆。
    感應耦合電漿質譜分析的結果顯示,齒舌周邊的細胞在stage I及stage II階段細胞內含有多量的矽與鐵。隨著牙齒礦化程度的增加,細胞中鐵的含量漸減,而矽的含量則起伏不大。再對照感應耦合電漿質譜對齒舌所做分析顯示,矽可能在造牙過程相當早期的階段就已運送至齒舌中儲存。
    藉由氫氟酸的使用可將齒舌中的矽由牙齒結構中移除,萃取出分子量小於20kDa之分子。此結果顯示這些分子與矽的沈積相關,並且在造牙過程中一併為礦物包覆沈積下來。胺基酸組成分析與資料庫比對結果顯示所分離出的分子與mitochondrial carrier protein family相似,可能與造牙過程中矽的運輸有關。利用上述結果,將齒舌結構以NH4F加以輕度破壞,再外加足量的矽之後發現,齒舌表面有新生成矽沈積的跡象,顯示齒舌中的有機分子似乎的確具誘發矽沈積的功能。


    Radulae of limpets are regarded as an ideal experimental material for studying biologically controlled mineral deposition for it possesses teeth in different mineralization stages. The possible mechanism of silica precipitation in the limpet Notoacmea schrenckii (Acmaeidae, Gastropoda) was explored in this study using electron microscopy, electron diffraction, energy-dispersive X-ray analysis, and ICP-MS. ICP-MS elemental analysis showed that iron and silica both infiltrate into the radulae in early stages during teeth development. Electron dense granules in nanometer size were observed in teeth ultrathin section specimen of early teeth formation stage, subsequent electron diffraction analysis indicates that silica is the primary component of these granules. Transmission electron microscopic images revealed the intimate association between silica granules and the organic matrix, which implied that the organic matrix may take more active roles in catalyzing other than merely functioning as physical constraints during mineral deposition. Low molecular weight peptides were harvested from cusp using HF extraction suggested the possibility of co-precipitation of the peptides together with silica. The amino acid composition result suggested that the peptides extracted from the cusps might be related to mitochondrial carrier protein family and thus might take part in silica transportation process. Milder NH4F treatment of the cusps to expose the peptides and the appearance of silica spheres following the application of silicate suggest that the low molecular weight peptides embedded within the minerals may assist silica precipitation.

    Abstract……………………………………………………………I Catalog……………………………………………………………III Introduction…………………………………………………1 Materials and Methods……………………………………6 1. Collection of limpet specimen and isolation of radula 6 2. Optic Microscope………………………………………6 2.1 The radulae together with the surrounding epithelial cells……………6 2.2 The histological sections of the radulae………6 3. Scanning electron microcopy (SEM) and energy dispersive spectroscopy (EDS) elemental analysis………………………………………………………7 4. Transmission electron microscopy (TEM) and EDS elemental analysis……7 5. Inductively coupled plasma-mass spectrometer (ICP-MS)…8 6. Extraction of peptides possibly involve in silica precipitation………………8 6.1 Peptides extracted from radulae with surrounding epithelial cells attached…………………………………………8 6.2 Extraction of peptides from the surrounding epithelial cells……………9 6.3 Extraction of peptides within the cusps…………………9 7. Electrophoresis……………………………………………9 8. Amino acid composition analysis……………………………10 9. Generation of antibodies……………………………………10 10. Western blotting………………………………………………10 11. Silica re-deposition experiment…………………………11 Results………………………………………………………12 1. Morphology observation………………………………………12 1.1OM observation…………………………………………………12 1.1a Anatomy………………………………………………………12 1.1b Histological sections………………………………………13 1.2 SEM observation and EDS analysis…………………………14 1.3 TEM observation and EDS analysis…………………………14 2. ICP-MS Analysis…………………………………………………15 3. Results on peptide analysis…………………………………16 3.1 Identification of low mw peptides………………………16 3.2 Amino acid sequence and composition analysis………17 3.3 Western blotting……………………………………………17 4. Results of silica re-precipitation experiment…………17 Discussion……………………………………………………………19 References…………………………………………………………27 Figures………………………………………………………………32 Tables………………………………………………………………44

    Bavestrello G, U Benatti, R Cattaneo-Vietti, C Cerrano, M Giovine. 2003. Sponge cell reactivity to various forms of silica. Microscopy Research and Technique 62: 327-335.
    Brooker LR, and DJ Macey. 2001. Biomineralization in chiton teeth and its usefulness as a taxonomic character in the genus Acanthopleura Guilding, 1929 (Mollusca: Polyplacophora). American Malacological Bulletin 16: 203-215.
    Brooker LR, AP Lee, DJ Macey, W von Bronswijk, J Webb. 2003. Multi-front iron mineralization in chiton teeth (Mollusca: Polyplacophora). Marine Biology 142: 447-454.
    Burford MA, DJ Macey, J Webb. 1986. Hemolymph ferritin and radula structure in the limpets Patelloida alticostata and Patella peronii. (Mollusca: Gastropoda). Comparative Biochemistry and Physiology 83A: 353-358.
    Cha J, K Shimizu, Y Zhou, SC Christiansen, BF Chmelka. 1999. Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proceedings of the National Academy of Sciences 96: 361-365.
    Grime GW, F Watt, S Mann, CC Perry, J Webb, RJP Williams. 1985. Biological applications of the Oxford scanning microprobe. Trends in Biochemical Sciences 10: 6-10.
    Indiveri C, V Iacobazzi, N Giangregorio, F Palmieri. 1997. The mitochondrial carnitine carrier protein: cDNA cloning, primary structure and comparison with other mitochondrial transport proteins. Biochemical Journal 321: 713-719.
    Jones EI, RA McCance, LRB Shackleton. 1935. The role of iron and silica in the structure of the radular teeth of certain marine molluscs. Journal of Experimantal Biology 12: 59-64.
    Krasko A, B Lorenz, R Batel, HC Schroder, IM Muller, WEG Muller. 2000. Expression of silicatein and collagen genes in the marine sponge Suberites domuncula is controlled by silicate and myotrophin. European Journal of Biochemistry 267: 4878-4887.
    Kröger N, R Deutzmann, C Bergsdorf, M Sumper. 2000. Species-specific polyamines from diatoms control silica morphology. Proceedings of the National Academy of Sciences 97(26): 14133-14138.
    Kröger N, R Deutzmann, M Sumper. 1999. Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286(5): 1129-1132.
    Kröger N, R Deutzmann, C Bergsdorf, M Sumper. 2001. Silica-precipitating peptides from diatoms. The Journal of Biologycal chemistry 276(28): 26066-26070.
    Kröger N, G Lehmann, R Rachel, M Sumper. 1997. Characterization of a 200-kDa diatom protein that is specifically associated with a silica-based substructure of the cell wall. European Journal of Biochemistry 250: 99-105.
    Kröger N, S Lorenz, E Brunner, M Sumper. 2002. Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis. Science 298: 584-586.
    Liddiard KJ, JG Hockridge, DJ Macey, J Webb, W van Bronswijk. 2004. Mineralization in the teeth of the limpets Patelloida alticostata and Scutellastra laticostata (Mollusca: Patellogastropoda). Molluscan Research 24: 21-31.

    Lowenstam HA. 1981. Minerals formed by organisms. Science 211: 1126-1131.
    Lowenstam HA. 1962b. Goethite in radular teeth of recent marine gastropods. Science 137: 279-180.
    Lu HK, CM Huang, CW Li. 1995. Translocation of ferritin and biomineralization of goethite in the radula of the limpet Cellana Toreuma Reeve. Experimental Cell Research 219: 137-145.
    Ma JF, K Tamai, N Yamaji, N Mitani, S Konishi, K Katsuhara, M Ishiguro, Y Murata, M Yano. 2006. A silicon transporter in rice. Nature 440 (30): 688-691.
    Macey DJ, LR Brooker. 1996. The junction zone: the initial site of mineralization in the radula teeth of the chiton Cryptoplax striata (Mollusca: Polyplacophora). Journal of Morphology 230: 33-42.
    Mann S, CC Perry, J Webb, B Luke, RJP Williams. 1986. Structure, morphology, composition and organization of biogenic minerals in limpet teeth. Proceedings of the Royal Society Series B 227: 179-190.
    Mann S, J Webb, RJP Williams, eds. 1989. Biomineralization. Chemical and Biochemical Perspectives. Weinheim: VCH.
    Mann S. ed. 2001. Biomineralization. Oxford, UK: Oxford Univ. Press.
    Meunier JD, F Colin, C Alarcon. 1999. Biogenic silica storage in soils. Geology 27:835-838.
    Müller WEG, A Krasko, G Le Pennec, HC Schröder. 2003. Biochemistry and cell biology of silica formation in sponges. Microscopy Research and Technique 12(4): 368-377.
    Nelson DR, CM Felix, JM Swanson. 1998. Highly conserved charge-pair networks in the mitochondrial carrier family. Journal of Molecular Biology 277: 285-308.
    Palmieri F. 1994. Mitochondrial carrier proteins. FEBS letters 346: 48-54.
    Poulsen N, M Sumper, N Kröger. 2003. Biosilica formation in diatoms: Characterization of native silaffin-2 and its role in silica morphogenesis. Proceedings of the National Academy of Sciences 100(21): 12075-12080.
    Pozzolini M, L Strula, C Cerrano, G Bavestrello, L Camardella, AM Parodi, F Raheli, U Benatti, WEG Muller, M Giovine, 2005. Molecular Cloning of Silicatein Gene from Marine Sponge Petrosia ficiformis (Porifera, Demospongiae) and Development of Primmorphs as a Model for Biosilicification Studies. Marine Biotechnology. 6(6): 594-603.
    Rinkevich B. 1993. Major primary stages of biomineralization in radular teeth of the limpet Lottia gigantean. Marine Biology 117 (2): pp. 269-277.
    Runham NW. 1961. The histochemistry of the radula of Patella vulgata. Journal of the Microscopical Society 102: 371-380.
    Runham NW, PR Thronton, DA Sham, RC Wayte. 1969. The mineralization and hardness of the radular teeth of the limpet Patella vulgata. Zeitschrifi fur Zellforschung und Mkroskopische Anatomie 99: 608-626.
    Runham NW, PR Thronton. 1967. Mechanical wear of the gastropod radula: a scanning electron microscope study. Journal of Zoology 153: 445-452.
    Shimizu K, J Cha, G.D Stucky, DE Morse. 1998. Silicatein □: Cathepsin L-like protein in sponge biosilica. Proceedings of the National Academy of Sciences 95: 6234-6238.
    Simkiss K, KW Wilbur, eds. 1989. Biomineralization: Cell Biology and Mineral Deposition. London: Academic Press.
    Simpson TL, BE Volcani, eds 1981. Silicon and Siliceous Structures in Biological Systems. New York: Springer.
    St Pierre TG, S Mann, J Webb, DPE Dickson, NW Runham, RJP Williams. 1986. Iron Oxide Biomineralization in the Radula Teeth of the Limpet Patella vulgata; Mossbauer Spectroscopy and High Resolution Transmission Electron Microscopy Studies. Proceedings of the Royal Society of London. Series B, Biological Sciences 228 (1250): pp. 31-42.
    Sumper M. ed. 2001. Biomineralization. Oxford: Oxford University Press.
    Sumper M. 2002. A phase separation model for the nanopatterning of diatom biosilica. Science 295: 2430-2433.
    Tallberg P, J Koski-Vahala, H Hartikainen. 2002. Germanium-68 as a tracer for silicon fluxes in freshwater sediment. Water Res. 36:956-962.
    Uriz MJ, X Turon, MA Becerro. 2000. Silica deposition in Demosponges: spiculogenesis in Crambe crambe. Cell Tissue Research 301: 200-309.
    Voronkov MG., GI Zelchan, EJ Lukevits. 1977. Silicon and Life 2nd Ed. Russia: Zinatne, Riga.
    Weaver JC, DE Morse. 2003. Molecular Biology of Demosponge Axial Filaments and Their Roles in Biosilicification. Microscopy Research and Technique 62: 356-367.
    Webb EA, JW Moffett, JB Waterbury. 2001. Iron stress in open ocean cyanobacteria (Synechococcus, Trochodesmium, and Crocosphaera spp.): identification of the IdiA protein. Appl Environ Microbiol 67: pp. 5444–5452.
    Weiner S, HA Lowenstam. 1989. On Biomineralization. Oxford: Oxford University Press.
    Werner EG, AK Muller, Pennec GL, HC Schroder. 2003. Biochemistry and cell biology of silica formation in sponges. Microscopy Research and Technique 62: 368-377.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE