研究生: |
林蔚鑫 Lin, Wei-Hsin |
---|---|
論文名稱: |
骨髓間質幹細胞於調節上皮-間質轉化機制及促進癌症轉移所扮演的角色 The role of bone marrow-derived mesenchymal stem cells in regulating epithelial-mesenchymal transition program and promoting cancer metastasis |
指導教授: |
李佳霖
Lee, Jia-Lin |
口試委員: |
張壯榮
Chang, Chuang-Rung 林孟暐 Lin, Mong-Wei 林澤 Lin, Che 王群超 Wang, Chun-Chao |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 69 |
中文關鍵詞: | 腫瘤幹細胞 、癌症骨轉移 、骨髓間質幹細胞 、肺癌 、腫瘤微環境 |
外文關鍵詞: | cancer stem cell, bone metastasis, bone marrow mesenchymal stem cell, lung cancer, tumor microenvironnment |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
過去研究發現惡性腫瘤細胞的上皮-間質轉化(epithelial-mesenchymal transition)及間質-上皮轉化 (mesenchymal-epithelial transition)與癌症的轉移有關。經由系統生物學方法分析不同時間點的微陣列(microarray)資料,我們發現骨髓間質幹細胞(bone marrow-derived mesenchymal stem cell)可誘導CD133+/CD83+肺癌腫瘤幹細胞(cancer stem cells) 轉移;而這些細胞轉移至遠端後,骨髓間質幹細胞可經由LIF-LIFR/p-ERK/pS727-STAT3訊息傳導路徑幫助腫瘤細胞進行間質-上皮轉化以獲得增殖及建立前轉移微環境(pre-metastatic niche)的能力。
另一方面,具有腫瘤向性的骨髓間質幹細胞移動至原位腫瘤時,可經由活化IL-6/IL6R/pY705-STAT3訊息傳導路徑,使CD151+/CD38+肺癌細胞經由上皮-間質轉化增強腫瘤幹細胞特性並進行轉移,同時CD133+/CD83+肺癌腫瘤幹細胞於所建立之前轉移利基(premetastatic niche)內的化學趨化物(chemo-attractants)可吸引CD151+/CD38+腫瘤細胞移動至遠端轉移處。總結來說,STAT3分子上不同位置(Tyrosine 705 和 Serine 727)產生磷酸化時,可調控腫瘤幹細胞的上皮-間質轉化與間質-上皮轉化過程,促使腫瘤細胞完成轉移。
Previous research has demonstrated that Epithelial–mesenchymal transition (EMT)/mesenchymal–epithelial transition (MET) processes are a driving force of cancer metastasis. We utilized systems-biology approaches to examine bone marrow-derived mesenchymal stem cell (BM-MSC)-driven lung cancer metastasis models. Microarray time-series data were analyzed, which revealed that BM-MSC-induced signaling triggered early dissemination of CD133+/CD83+ cancer stem cells (CSCs) from the primary tumor site shortly after STAT3 activation. These CSCs, when in the secondary metastatic site, switched from the migratory (mesenchymal) to the proliferative (epithelial) phenotype under the influence of active LIF/LIFR/p-ERK/pS727-STAT3 signaling. At the same time, LIF-LIFR/p-ERK/pS727-STAT3 signaling also promoted the formation of pre-metastatic niche. Then, tumor-tropic BM-MSCs circulated to the primary site and endowed CD151+/CD38+ cells with EMT-associated CSC properties through IL6R/pY705-STAT3 signaling. These CD151+/CD38+ cells were then drawn by chemo-attractants at the pre-metastatic niche and migrated to the secondary site. In summary, STAT3 phosphorylation at tyrosine 705 and serine 727 differentially regulates the EMT–MET switch within distinct molecular subtypes of CSCs to complete the metastatic process.
1. Husemann Y, Geigl JB, Schubert F, Musiani P, Meyer M, Burghart E, et al. Systemic spread is an early step in breast cancer. Cancer Cell. 2008; 13:58–68.
2. Pavlidis N, Khaled H, Gaafar R. A mini review on cancer of unknown primary site: a clinical puzzle for the oncologists. J Adv Res. 2015; 6:375–82.
3. Klein CA. Framework models of tumor dormancy from patient-derived observations. Curr Opin Genet Dev. 2011; 21:42–9.
4. Schardt JA, Meyer M, Hartmann CH, Schubert F, Schmidt-Kittler O, Fuhrmann C, et al. Genomic analysis of single cytokeratin-positive cells from bone marrow reveals early mutational events in breast cancer. Cancer Cell. 2005; 8:227–39.
5. Rhim AD, Mirek ET, Aiello NM, Maitra A, Bailey JM, McAllister F, et al. EMT and dissemination precede pancreatic tumor formation. Cell 2012; 148:349–61.
6. Eyles J, Puaux AL, Wang X, Toh B, Prakash C, Hong M, et al. Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of melanoma. J Clin Investig. 2010; 120:2030–9.
7. Santamaria PG, Moreno-Bueno G, Portillo F, Cano A. EMT: Present and future in clinical oncology. Mol Oncol. 2017; 11: 718–38.
8. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008; 133:704–15.
9. van der Pluijm G. Epithelial plasticity, cancer stem cells and bone metastasis formation. Bone. 2011; 48:37–43.
10. Braun S, Vogl FD, Naume B, Janni W, Osborne MP, Coombes RC, et al. A pooled analysis of bone marrow micrometastasis in breast cancer. N. Engl J Med. 2005; 353:793–802.
11. Pierga JY, Bidard FC, Mathiot C, Brain E, Delaloge S, Giachetti S, et al. Circulating tumor cell detection predicts early metastatic relapse after neoadjuvant chemotherapy in large operable and locally advanced breast cancer in a phase II randomized trial. Clin Cancer Res. 2008; 14:7004–10.
12. Kim MY, Oskarsson T, Acharyya S, Nguyen DX, Zhang XH, Norton L, et al. Tumor self-seeding by circulating cancer cells. Cell. 2009; 139:1315–26.
13. Pantel K, Brakenhoff RH, Brandt B. Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat Rev Cancer. 2008; 8:329–40.
14. Bianco P. “Mesenchymal” stem cells. Annu Rev Cell Dev Biol. 2014; 30:677–704.
15. Kidd S, Spaeth E, Dembinski JL, Dietrich M, Watson K, Klopp A, et al. Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescent imaging. Stem Cells. 2009; 27:2614–23.
16. Liu S, Cong Y, Wang D, Sun Y, Deng L, Liu Y, et al. Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Rep. 2014; 2:78–91.
17. Chang YW, Su YJ, Hsiao M, Wei KC, Lin WH, Liang CL, et al. Diverse targets of beta-catenin during the epithelial-mesenchymal transition define cancer stem cells and predict disease relapse. Cancer Res. 2015; 75:3398–410.
18. Chu YW, Yang PC, Yang SC, Shyu YC, Hendrix MJ, Wu R, et al. Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. Am J Respir Cell Mol Biol. 1997; 17:353–60.
19. Sansone P, Storci G, Tavolari S, Guarnieri T, Giovannini C, Taffurelli M, et al. IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J Clin Investig. 2007; 117:3988–4002.
20. Markopoulos GS, Roupakia E, Marcu KB, Kolettas E. Epigenetic regulation of inflammatory cytokine-induced epithelial-to-mesenchymal cell transition and cancer stem cell generation. Cells. 2019; 8:1143
21. Iliopoulos D, Hirsch HA, Struhl K. An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell. 2009; 139:693–706.
22. Yang M, Hasegawa S, Jiang P, Wang X, Tan Y, Chishima T, et al. Widespread skeletal metastatic potential of human lung cancer revealed by green fluorescent protein expression. Cancer Res. 1998; 58:4217–21.
23. Chaturvedi P, Gilkes DM, Wong CC, Luo W, Zhang H, Wei H, et al. Hypoxia-inducible factor-dependent breast cancer mesenchymal stem cell bidirectional signaling promotes metastasis. J Clin Investig. 2013; 123:189–205.
24. Korpal M, Ell BJ, Buffa FM, Ibrahim T, Blanco MA, Celia-Terrassa T, et al. Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization. Nat Med. 2011; 17:1101–8.
25. Liu SC, Tsang NM, Chiang WC, Chang KP, Hsueh C, Liang Y, et al. Leukemia inhibitory factor promotes nasopharyngeal carcinoma progression and radioresistance. J Clin Investig. 2013; 123: 5269–83.
26. Biddle A, Liang X, Gammon L, Fazil B, Harper LJ, Emich H, et al. Cancer stem cells in squamous cell carcinoma switch between two distinct phenotypes that are preferentially migratory or proliferative. Cancer Res. 2011; 71:5317–26.
27. Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T. Opinion: migrating cancer stem cells—an integrated concept of malignant tumour progression. Nat Rev Cancer. 2005;5:744–9.
28. Nicola NA, Babon JJ. Leukemia inhibitory factor (LIF). Cytokine Growth Factor Rev. 2015; 26:533–44.
29. Williams RL, Hilton DJ, Pease S, Willson TA, Stewart CL, Gearing DP, et al. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature. 1988; 336:684–7.
30. Niwa H, Burdon T, Chambers I, Smith A. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev. 1998;12:2048–60.
31. Huang G, Yan H, Ye S, Tong C, Ying QL. STAT3 phosphorylation at tyrosine 705 and serine 727 differentially regulates mouse ESC fates. Stem Cells. 2014; 32:1149–60.
32. Liang CJ, Wang ZW, Chang YW, Lee KC, Lin WH, Lee JL. SFRPs are biphasic modulators of Wnt-signaling-elicited cancer stem cell properties beyond extracellular control. Cell Rep. 2019; 28:1511–25. e5.
33. Su YJ, Lai HM, Chang YW, Chen GY, Lee JL. Direct reprogramming of stem cell properties in colon cancer cells by CD44. EMBO J. 2011; 30:3186–99.