研究生: |
陳柏烜 Chen, Bo Shuan |
---|---|
論文名稱: |
摻鈷氧化鋅的製程與特性研究 Fabrication and characterization Studies of Co-doped Zinc Oxides |
指導教授: |
戴明鳳
Tai, Ming Fong |
口試委員: |
林志明
Lin, Chih MIng 方昭訓 Fang, Jau Shiung |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 46 |
中文關鍵詞: | 半導體 、鈷 、氧化鋅 、順磁性 |
外文關鍵詞: | semiconductor, cobalt, zinc oxide, paramagnetism |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究中我們使用固態反應法和化學沉積法兩種方法製作鈷摻雜量在0.5%-16%間的摻鈷氧化鋅粉末。粉末X光繞射圖顯示大部分晶格繞峰位置會隨著鈷的濃度增加,而移至較低角度;此結果顯示摻鈷氧化鋅的晶格常數隨著鈷含量增加而變大。拉曼光譜圖顯示摻鈷氧化鋅的其中三個聲子震動模組A1、E1、E2,隨著鈷含量增加而移到較低的頻率。此外,A1聲子震動模組的強度隨著鈷含量而增加,表示鈷氧間的電子極化強度比鋅氧間的還強。超導量子干涉磁化儀的測量結果,顯示摻鈷氧化鋅在室溫時呈現順磁性。以化學沉積法製備得的摻鈷氧化鋅粉末比使用固態反應法所得的粉末具有較強的磁化強度。化學沉積法所製備的16%摻鈷氧化鋅樣品有高達0.130 emu/g•T的磁化率。X光吸收光譜圖顯示摻鈷氧化鋅結構中的鈷是屬於+2氧化數。
In this study, we report high cobalt concentration doped ZnO (Co content from 0 up to 16%) prepared by both solid reaction and chemical precipitation methods. The X-ray powder diffraction patterns show that most diffraction peaks slightly shift to lower degrees with increasing cobalt content. As a result, the crystal lattice constant increases with the Co content. Our results of Raman scattering spectra show that the A1, E1 and E2 vibration phonon modes of Co-ZnO shift to lower frequencies with increasing cobalt concentration. The intensity of the A1 mode increase with the Co content. The electric polarization of Co-O is stronger than that of Zn-O. The results of SQUID magnetometer show that the Co-ZnO samples fabricated by the chemical precipitation method exhibit paramagnetic property with magnetic susceptibility up to 0.1296 emu/g•T at 16% Co content under room temperature. The Co-ZnO samples prepared by chemical precipitation method have stronger paramagnetic property than samples by solid reaction. The result of X-ray absorption near edge structure shows the Co atoms in Co-ZnO structure are at +2 oxidation state.
[1] Tomasz Dietl, “A ten-year perspective on dilute magnetic semiconductors and oxides”. Rev. Nature Materils. 9, pp965-974 (2010).
[2] Y. Shapira, S. Foner, D. H. Ridgley, K. Dwight, “A World, Technical saturation and magnetization steps in diluted magnetic semiconductors: Predictions and observations”. Phys. Rev. B 30, pp4021–4023 (1984).
[3] C. Liu, F. Yun, H. Morkc, “Ferromagnetism of ZnO and GaN: A review”. Rev. JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS. 16, pp555– 597 (2005).
[4] K. Kittilstved, N. Norberg, D. Gamelin, “Chemical Manipulation of High-TC Ferromagnetism in ZnO Diluted Magnetic Semiconductors”, Rev. Phys. Lett. 94, (2005).
[5] J. Bryan, S. Santangelo, S. Keveren, D. Gamelin, “Activation of High-TC Ferromagnetism in Co+2:TiO2 and Cr+3:TiO2 Nanorods and Nanocrystals by Grain Boundary Defects”, J. AM. CHEM. SOC. 27, pp15568-15574 (2005).
[6] T. Story, R. R. Gała̧zka, R. B. Frankel, P. A. Wolff, “Carrier-concentration induced ferromagnetism in PbSnMnTe”. Phys. Rev. Lett. 56, pp777–779 (1986).
[7] H. Ohno, H. Munekata, T. Penney, S. von Molnár, L. L. Chang, “Magnetotransport properties of p-type (In, Mn)As diluted magnetic III-V semiconductors”. Phys. Rev. Lett. 68, pp2664–2667 (1992).
[8] A. Shen, H. Ohno, F. Matsukura, Y. Sugawara, N. Akiba, T. Kuroiwa, A. Oiwa, A. Endo, S. Katsumoto, Y. Iye, “(Ga, Mn)As: a new diluted magnetic semiconductor based on GaAs”. Appl. Phys. Lett. 69, pp363–365 (1996).
[9] A. VanEsch, L. VanBockstal,J. DeBoeck, G. Verbanck, AS. vanSteenbergen, PJ. Wellmann, B. Grietens, “Interplay between the magnetic and transport properties in the III-V diluted magnetic semiconductor Ga1−xMnxAs”. Phys. Rev. B 56, pp13103–13112 (1997).
[10] A. Haury, A. Wasiela, A. Arnoult, J. Cibert, S. Tatarenko, T. Dietl1, Y. Merle d'Aubigné, “Observation of a ferromagnetic transition induced by two-dimensional hole gas in modulation-doped CdMnTe quantum wells”. Phys. Rev. Lett. 79, pp511–514 (1997).
[11] D. Ferrand, J. Cibert, A. Wasiela, C. Bourgognon, S. Tatarenko, G. Fishman, T. Andrearczyk, J. Jaroszy´nski, S. Kole´snik, T. Dietl, B. Barbara, D. Dufeu, “Carrier-induced ferromagnetic interactions in p-doped Zn1−xMnxTe epilayers”. J. Cryst. Growth 214–215, pp387–390 (2000).
[12] D. Awschalom1, M. Flatté, “Challenges for semiconductor spintronics”. Nature Phys. 3, pp153–159 (2007).
[13] T. Dietl, D. Awschalom, M. Kaminska, H. Ohno, “Spintronics (Semiconductors and Semimetals)” 82, Elsevier, 2008.
[14] Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno, D. D. Awschalom, “Electrical spin injection in a ferromagnetic semiconductor heterostructure”. Nature. 402, pp790–792 (1999).
[15] H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl1, Y. Ohno, K. Ohtani, “Electric-field control of ferromagnetism”. Nature. 408, pp944–946 (2000).
[16] D. Chiba, M. Sawicki, Y. Nishitani, Y. Nakatani, F. Matsukura, H. Ohno, “agnetization vector manipulation by electric fields” Nature. 455, pp15–518 (2008).
[17] A. Chernyshov, M. Overby, X. Liu, J. Furdyna, Y. Lyanda-Geller1, L. Rokhinson1, “vidence for reversible control of magnetization in a ferromagnetic material by means of spin–orbit magnetic field” Nature Phys. 5, p656–659 (2009).
[18] C. Gould, C. Rüster, T. Jungwirth, E. Girgis, G. M. Schott, R. Giraud, K. Brunner, G. Schmidt, L. W. Molenkamp, “Tunnelling anisotropic magnetoresistance: a spin-valve like tunnel magnetoresistance using a single magnetic layer”. Phys. Rev. Lett. 93, pp117203 (2004).
[19] J. Wunderlich, T. Jungwirth, B. Kaestner, A. C. Irvine, A. B. Shick, N. Stone, K. Y. Wang, U. Rana, A. D. Giddings, C. T. Foxon, R. P. Campion, D. A. Williams, B. L. Gallagher, “Coulomb blockade anisotropic magnetoresistance effect in a (Ga, Mn)As single-electron transistor”. Phys. Rev. Lett. 97, pp077201 (2006).
[20] K. Ueda, H. Tabata, T. Kawai, “Magnetic and electric properties of transition-metal-doped ZnO films”, App Phys. Lett. 79, pp988 (2001).
[21] C. Zener, “Interaction between the d-Shells in the Transition Metals II. Ferromagnetic Comyountls of Manganese with Perovskite Structure”, Phys. Rev. 82, p403-405 (1951).
[22] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, “Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors”. Science. 287, pp1019 (2000).
[23] Ü. Özgür, Ya. I. Alivov, C. Liu1, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.J. Cho1, H. Morkoc, “A comprehensive review of ZnO materials and devices”. J. Appl. Phys. 98, pp041301 (2005).
[24] R. Udayabhaskar, R. V. Mangalaraja, B. Karthikeyan. “Thermal annealing induced structural and optical properties of Ca doped ZnO nanoparticles”. Journal of Materials Science: Materials in Electronics. 24, p3183-3188 (2013).
[25] P. Sharma, A. Gnpta, K.V. Rao, F. Owens, R. Sharma, R. Ahuja, J. Guillen, B. Johansson, G. A. Gehring, “Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO”. Nature Materilas. Vol 2. pp673-677 (2003).
[26] A. Baranowska-Korczyc, A. Reszka, K. Sobczak, B, Sikora, P, Dziawa, M. Aleszkiewicz, L. Kłopotowski, W. Paszkowicz, P. Dłuzewski, B. Kowalski, T. Kowalewski, M. Sawicki, D. Elbaum, K. Fronc, “Magnetic Fe doped ZnO nanofibers obtained by electrospinning”. J Sol-Gel Sci Technol. 61, pp494–500 (2012).
[27] A. Sivagamasundari, R. Pugaze, S. ChandrasekarS, Rajagopan, R. Kannan. “Absence of free carrier and paramagnetism in cobalt-doped ZnO nanoparticles synthesized at low temperature using citrate sol–gel route”. Appl Nanosci. 3, pp383–388 (2013).
[28] S. Kumar, Y. J. Kim, B. H. Koo, Heekyu Choi, C. G. Lee. “Ferromagnetism in Chemically synthesized Co-doped ZnO”. Journal of the Korean Physical Society, Vol. 55, No. 3, pp1060-1064 (2009).
[29] R. Cuscó, E. Alarcón-Lladó, J. Ibáñez, L. Artús. “Temperature dependence of Raman scattering in ZnO”. Phys. Rev. B 75, pp165202 (2007).