簡易檢索 / 詳目顯示

研究生: 何冠霖
Ho, Kuan-Lin
論文名稱: 鈮酸鋰-矽異質晶圓對接合界面性質之研究
指導教授: 胡塵滌
Hu, Chen-Ti
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 110
中文關鍵詞: 晶圓異質接合界面性質癒合
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文之目標為研究鈮酸鋰-矽異質晶圓對最新觀察到的自發性裂口癒合行為,探討鈮酸鋰-矽異質晶圓對接合界面裂口性質,並比較與矽-矽晶圓對界面裂口性質間的差異,同時也討論施加電場可能對鈮酸鋰-矽異質晶圓對或矽-矽晶圓對之接合界面裂口性質的影響,期望尋找與建立鈮酸鋰-矽異質晶圓對界面裂口自發性癒合行為之可能的物理機制。
    利用電漿活化方法將鈮酸鋰晶圓與矽晶圓接合,可達到良好的接合效果及接合強度;刀刃法觀察發現鈮酸鋰-矽異質晶圓對界面裂口在室溫下經過一段時間的放置,有自發癒合現象,且晶圓對上X軸方向的裂口癒合程度較Z軸方向的裂口為佳;矽-矽晶圓對接合界面裂口則無自發癒合現象。利用施加正向電場(正極:矽晶圓;負極:鈮酸鋰晶圓)的方式,使鈮酸鋰-矽異質晶圓對經過刀刃法量測的界面能回復。曾否施加正向電場對於鈮酸鋰-矽異質晶圓對之首次經刀刃法量測之新區域的界面裂口,其癒合的程度並無顯著差異。推測矽晶圓內部的磷離子受鈮酸鋰晶圓自發極化吸引至接合界面,形成陽離子架橋讓晶圓對兩表面的OH-基團更加靠近,部分區域經過去水會有共價鍵結產生,使得鈮酸鋰-矽異質晶圓對有自發性裂口癒合的行為。


    第一章 前言 --------------------------------------------------------------- 1 第二章 文獻回顧---------------------------------------------------------- 3 2-1. 晶圓接合的簡介與機制------------------------------------------- 3 2-2. 晶圓接合的歷史回顧---------------------------------------------- 3 2-3. 晶圓接合的應用---------------------------------------------------- 4 2-3-1. 積體電路上的應用-------------------------------------------- 5 2-3-2. 微機電系統上的應用----------------------------------------- 6 2-3-3. P-n junction的應用--------------------------------------------- 7 2-3-4. 異質接合的應用----------------------------------------------- 7 2-3-5. 封裝保護作用-------------------------------------------------- 9 2-4. 異質晶圓直接接合的優點---------------------------------------- 10 2-5. 電漿表面活化接合製程------------------------------------------- 10 2-6. 裂口癒合的研究---------------------------------------------------- 11 2-7. 鈮酸鋰的簡介------------------------------------------------------- 13 第三章 實驗程序---------------------------------------------------------- 34 3-1. 電漿活化接合製程------------------------------------------------- 34 3-1-1. 晶圓表面清洗步驟-------------------------------------------- 34 3-1-2. 晶圓表面活化處理-------------------------------------------- 35 3-1-3. 接合流程-------------------------------------------------------- 36 3-2. 施加電場流程------------------------------------------------------ 36 3-3. 實驗分析與儀器介紹---------------------------------------------- 38 3-3-1. 接合狀態觀察-------------------------------------------------- 38 3-3-2. 紅外線照相術-------------------------------------------------- 38 3-3-3. 接合界面觀察-------------------------------------------------- 39 3-3-4. 刀刃裂口觀察-------------------------------------------------- 39 3-3-5. 界面強度測試-------------------------------------------------- 40 3-3-6. 晶圓表面縱深分析-------------------------------------------- 41 3-3-7. 傅立葉轉換紅外線光譜-------------------------------------- 42 3-3-8. X光光電子發射能譜量測------------------------------------ 43 第四章 結果與討論------------------------------------------------------- 50 4-1. 接合狀態觀察------------------------------------------------------- 50 4-2. 接合截面觀察結果-------------------------------------------------- 50 4-3. 刀刃裂口觀察結果------------------------------------------------- 51 4-3-1. 界面能比較----------------------------------------------------- 52 4-3-2. 不同軸刀刃法插刀比較-------------------------------------- 53 4-3-3. 接合界面裂口與放置時間的關係-------------------------- 54 4-3-4. 加電場前後的差異-------------------------------------------- 55 4-3-5. 加電場後新區域做刀刃法觀察----------------------------- 58 4-4. 紅外線光譜分析結果---------------------------------------------- 58 4-5. 晶圓表面縱深分析結果------------------------------------------- 60 4-6. X光光電子發射能譜量測結果----------------------------------- 62 4-7. 鈮酸鋰-矽異質晶圓對界面裂口癒合機制--------------------- 63 第五章 結論---------------------------------------------------------------- 100 參考文獻---------------------------------------------------------------------- 103

    1. Jan Haisma and G.A.C.M. Spierings, “Contact bonding, including direct-bonding in a historical and recent context of materials science and technology, physics and chemistry-Historical review in a broader scope and comparative outlook”, Materials Science and Engineering R37, p. 1-60 (2000)
    2. Roger G. Horn, “Surface Forces and Their Action in Ceramic Materials”, J. Am. Ceram. Soc. 73 (5), p. 1117-1135 (1990)
    3. Kai-Tak Wan, Douglas T. Smith and Brain R. Lawn, “Fracture and Contact Adhesion Energies of Mica-Mica, Silica-Silica, and Mica-Silica Interfaces in Dry and Moist Atmospheres”, J. Am. Ceram. Soc. 75, p. 667-676 (1992)
    4. J.B. Lasky, S.R. Stiffler, F. R. White and J. R. Abernathey, IEDM Tech. Dig., 648 (IEEE, New York, 1985)
    5. J.B. Lasky, “Wafer bonding for silicon-on-insulator technologies”, Appl. Phys. Lett. 48, p. 78-80 (1986)
    6. M. Shimbo, K. Furukawa, K. Furuda, K. Tanzawa, “Silicon-to-silicon direct bonding method”, J. Appl. Phys. 60(8), p. 2987-2989 (1986)
    7. Q.-T. Tong, X.-L. Xu, and H. Shen, “Diffusion and oxide viscous flow mechanism in SDB process and silicon wafer rapid thermal bonding”, Electronics Letters 26, p. 697-699 (1990)
    8. K.-Y. Ahn, R. Stengl, T. Y. Tan, U. Gösele, “Stability of interfacial oxide layers during silicon wafer bonding”, J. Appl. Phys. 65, p. 561-563 (1989)
    9. H. Takagi, R. Maeda, T. R. Chung, and T. Suga, “Low-temperature direct bonding of silicon and silicon dioxide by surface activation method”, Sensors and Actuators A 70, p. 164-170 (1998)
    10. James B. Kuo and Ker-Wei Su, “CMOS VLSI ENGINEERING: Silicon-on-insulator (SOI)”, Kluwer Academic Publishers, p. 1-11 (1998).
    11. Jean-Pierre Colinge, “Silicon-On-Insulator Technology :Materials to VLSI”, p. 136-138(1997)
    12. Martin A. Schmidt, “Wafer-to-Wafer Bonding for Microstructure Formation”, Proceedings of the IEEE 86(8), p. 1575-1585 (1998)
    13. T. Suni, K. Henttinen, A. Lipsanen. J. Dekker, H. Luoto, and M.
    Kulawski, “Wafer Scale Packaging of MEMS by Using
    Plasma-Activated Wafer Bonding”, Journal of The Electrochemical
    Society, 153 (1) G78-G82 (2006)
    14. Niclas Keskitalo, Stefan Tiensuu, Anders Hallen, “Characterization of hydrophobic bonded silicon wafers”, Nuclear Instruments and Methods in Physics Research B 186, p. 66-70 (2002)
    15. Q.-T. TONG and U. GÖSELE, “SEMICONDUCTOR WAFER BONDING : SCIENCE AND TECHNOLOGY”, John Wiley & Sons Inc. (1999)
    16. T.R. Chung, L.Yang, N.Hosoda, B.Takagi, T.Suga, “Wafer direct bonding of compound semiconductors and silicon at room temperature by the surface activated bonding method”, Appl. Surf. Sci. 117-118, p. 808-812 (1997)
    17. T.R. Chung, L. Yang, N. Hosoda, T. Suga, “Room temperature GaAs-Si and InP-Si wafer direct bonding by the surface activated bonding method”, Nucl. Instrum. Methods Phys. Res. B 121, p. 203-206 (1997)
    18. Donato Pasquariello, Martin Camacho, Klas Hjort, László Dózsa, Béla Szentpáli, “Evaluation of InP-to-silicon heterobonding”, Materials Science and Engineering B 80, p. 134-137 (2001)
    19. V. Lehmann, K. Mitani, R, Stengl, T. Mii and U. Gösele, “Bubble-Free Wafer Bonding of GaAs and InP on Silicon in a Microcleanroom”, Jap. J. Appl. Phys. 28, p. L2141-L2143 (1989)
    20. F.A. Kish, F.M. Steranka, D.C. DeFevere, D.A. Vanderwater, K.G. Parker, C.P. Kuo, T.D. Osentowski, M.J. Peanasky, J.G. Yu, R.M. Fletcher, D.A. Steigerwald, M.G. Craford, V.M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes”, Appl. Phys. Lett. 64, p. 2839-2841 (1994)
    21. B.F. Levine, A.R. Hawkins, S. Hiu, B.J. Tseng, C.A. King, L.A. Gruezke, R. W. Johnson, D. R. Zolnowski, and J. E. Bowers, “20 GHz high performance planar Si/InGaAs p-i-n photodetector”, Appl. Phys. Lett. 70 (18), p. 2449-2451 (1997)
    22. J.H. Wang, M.S. Jin, V.H. Ozguz, S.H. Lee, “N-channel metal-on- semiconductor transistors fabricated in a silicon film bonded onto sapphire”, Appl. Phys. Lett. 64, p. 724-726 (1994)
    23. Akihiko Murai, Lee McCarthy, Umesh Mishra, Steven P. DenBaars, Carsten Kruse, Stephan Figge and Detlef Hommel, “Wafer Bonding of GaN and ZnSSe for Optoelectronic Applications”, Jap. J. Appl. Phys. 43, p. L1275-L1277 (2004)
    24. Yoshihiro Tomita, Masato Sugimoto, and Kazuo Eda, “Direct bonding of LiNbO3 single crystals for optical waveguides”, Appl. Phys. Lett. 66, 1484 (1995)
    25. K. Eda, M. Sugimoto, Y. Tomita, “Direct heterobonding of lithium niobate onto lithium tantalate”, Appl. Phys. Lett. 66, p. 827-828 (1995)
    26. Martin Alexe, Gerhard Kästner, Dietrich Hesse, and Ulrich Gösele, “Ferroelectric-semiconductor heterostructures obtained by direct wafer bonding”, Appl. Phys. Lett. 70, p. 3416-3418 (1997)
    27. Q.-Y. Tong, R. Gafiteanu, U. M. Gösele, “Reversible Silicon Wafer Bonding for Surface Protection: Wafer-Enhanced Debonding”, J. Electrochem. Soc. 139, p. L101-L102 (1992)
    28. H. Takagi, K. Kikuchi, R. Maeda, T. R. Chung and T. Suga, “Surface activated bonding of silicon wafers at room temperature”, Appl. Phys. Lett. 68 (16), p. 2222-2224 (1996)
    29. Hideki Takagi, Ryutaro Maeda, Teak Ryong Chung, Naoe Hosoda and Tadatomo Suga, “Effect of Surface Roughness on Room-Temperature Wafer Bonding by Ar Beam Surface Activation”, Jpn. J. Appl. Phys. 37, p. 4197-4293 (1998)
    30. Hideki Takagi, Ryutaro Maeda, Naoe Hosoda and Tadatomo Suga, “Room-Temperature Bonding of Si Wafers to Pt Films on SiO2 or LiNbO3 Substrates Using Ar-Beam Surface Activation”, Jpn. J. Appl. Phys. 38, p. L1559-L1561 (1999)
    31. Hideki Takagi, Ryutaro Maeda, Tadatomo Suga, “Wafer-scale spontaneous bonding of silicon wafers by argon-beam surface activation at room temperature”, Sensors and Actuators A 105, p. 98- 102 (1997)
    32. T. Suni, K. Henttinen, I. Suni and J. Mäkinen, “Effects of Plasma Activation on Hydrophilic Bonding of Si and SiO2”, J. Electrochem. Soc. 149, p. G348-G351 (2002)
    33. Xuanxiong Zhang and Jean-Pierre Raskin, “Low-temperature Wafer Bonding - Optimal O2 Plasma Surface Pretreatment Time”, Electrochemical and Solid-State Letters 7(8), p. G172-G174 (2004)
    34. T.A. Michalske and S.W. Freiman, “A molecular interpretation of stress corrosion in silica”, Nature 295, p.511-512 (1982)
    35. B.R. Lawn, D.H. Roach and R.M. Thomson,“Thresholds and reversibility in brittle cracks: an atomistic surface force model ”, Journal of materials science 22, p.4036-4050(1987)
    36. K.T. Wan, N. Aimard, S. Lathabai, R.G. Horn and B.R. Lawn, “Interfacial energy states of moisture-exposed cracks in mica”, J. Mater. Res 5, p.172-182(1990)
    37. T.A. Michalske and E.R. Fuller, “Closure and Repropagation of Healed Cracks in Silicate Glass”, J. Am. Ceram. Soc. 68, p.586-590
    38. P.J. Wang, C.C. Chuang and C. T. Hu, "Recovery of Blade-Insertion-Tested Si Wafer Pairs by Thermal Healing," Journal of The Electrochemical Society 153 (3), p.G192-G196 (2006).
    39. W.H. Zachariasen, Skr. Norske Vid-Ada, Oslo, Mat. Naturv. No.4 (1928)
    40. B.T. Matthias and J.P. Remeika, “Ferroelectricity in the illmenite structure”, Phys. Rev., 76, p.1886 (1949).
    41. A.A. Ballman, “Growth of piezoelectric and ferroelectric materials by the Czochralski technique”, J. Am. Ceram. Soc., 48, p. 112(1965).
    42. S.C. Abrahams, J.M. Reddy and J.L. Bernstein, “Ferroelectric lithium niobate. 3. Single crystal X-ray diffraction study at 24℃”, J. Phys. Chem. Solids, 27, p. 997(1966).
    43. S.C. Abrahams, W.C. Hamilton and J.M. Reddy, “Ferroelectric lithium niobate. 4. Single crystal neutron diffraction study at 24℃”, J. Phys. Chem. Solids, 27,p. 1013(1966).
    44. S.C. Abrahams, H.J. Levinstein and J.M. Reddy, “Ferroelectric lithium niobate. 5. Polycrystal X-ray diffraction study between 24℃and 1200℃”, J. Phys. Chem. Solids, 27 , 1019(1966).
    45. H.D. Megaw, “A note on the structure of lithium niobate”, Acta Crystallogr., A24 ,p.583(1968).
    46. S.C. Abrahams and P. Marsh, “Defect structure dependence on composition in lithium niobate”, Acta Crystallogr., B42, p. 61(1986).
    47. P.K. Gallagher, H.M. O’Bryan, “Characterization of LiNbO3 by dilatometry and DTA”, J. Am. Ceram. Soc., 68 ,p.147(1985).
    48. A. Yariv and P. C. Yeh, “Optical Waves in Crystal”, John Wiley& Sons, Inc. 1984.
    49. R.S. Weis and T.K. Gaylord, “ Lithium Niobate: Summary of Physical Properties and Crystal Structure ”, Appl. Phys. A 37, p. 191-203 (1985)
    50. 馮端 主編,“固態物理學大辭典”,建宏出版社 (1998)
    51. E.Popov, “Engineering Mechanics of solids”, Printice Hall, Englewood Cliffs, NJ(1990)
    52. W. P. Masara, G. Goetz, A. Caviglia, and J. B. McKitterick, “ Bonding of silicon wafers for silicon-on-insulator ”, J. Appl. Phys. 64 (10), pp. 4943-4950 (1998)
    53. 汪建民 主編, “材料分析”,中國材料科學學會,材料科學叢書2 (1998)
    54. Dieter K. Schroder, “Semiconductor material and devise characterization”, John Wiley & Sons, Inc. 2nd edition (1998)
    55. Q.-Y. Tong, G. Cha, R. Gafiteanu, and U. Gösele, “Low temperature wafer direct bonding,” J. Microelectromech. Syst., vol. 3, pp. 29–35 (1994)
    56. A. Weinert, P. Amirfeiz, S. Bengtsson, “Plasma assisted room temperature bonding for MST,” Sensors and Actuators, A 92, pp. 214-222 (2001)
    57. Canaria, Christie A., Lees, Inez N., Wun, Aetna W., Miskelly, Gordon M., Sailor, Michael J., “Characterization of the carbon-silicon stretch in methylated porous silicon-observation of an anomalous isotope shift in the FTIR spectrum”, Inorganic Chemistry Communications 5(8), p.560, (2002)
    58. C. Y. Wang, J. Z. Zheng, Z. X. Shen, Y. Lin, A. T. S. Wee, “Elimination of O2 plasma damage of low-k methyl silsesquioxane film by As implantation”, Thin solid film 397, p.90, (2001)
    59. S. Kalem, D.Göbelek, R. Kurtar, Z. Misirh, “The effects of surface treatment on optical and vibrational properties of stain-etched silicon”, NanoStructured Materials 6, p.847, (1995)
    60. J.R. During, Applications of FT-IR spectroscopy, Amsterdam, Elsevier, (1990)
    61. 賴欣怡,國立清華大學材料科學與工程研究所碩士論文,“晶圓直接接合製程物理及化學機制討論”,民國九十二年六月。
    62. D.J.Lee, B.K.Ju, J.Jang, K.B.Lee and M.H.Oh, “Effects of a hydrophilic surface in anodic bonding”, J.Micromech.Microeng 9, p.313-318(1999)
    63. J.Wei, S.M.L. Nai, C.K. Wong and L .C. Lee, “Glass-to-glass anodic bonding process and electrostatic froce”, Thin Solid Film462-463, p.487-491(2004)
    64. C.D.Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder and G.E.
    Muilenberg, “Handbook of X-ray Photoelectron Spectroscopy”,
    Perkin-Elmer Corporation Physical Electronics Division.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE