研究生: |
陳治平 Chih-Ping Chen |
---|---|
論文名稱: |
Inversion n-channel Enhancement-mode GaAs and InGaAs MOSFETs 砷化鎵及砷化銦鎵n型反轉通道增強型金屬氧化物半導體場效電晶體之研究 |
指導教授: |
洪銘輝
Ming-Hwei Hong 郭瑞年 Ray-Nien Kwo |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 109 |
中文關鍵詞: | 砷化鎵 、金氧半元件 、反轉通道 |
外文關鍵詞: | GaAs, MOSFET, iversion |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氮化鈦/氧化鎵與氧化釓混合氧化物/砷化鎵及砷化銦鎵組合的金氧半二極體經過快速高溫退火至750oC高溫後依舊呈現極佳的電性及結構穩定性:如低閘極漏電流密度(10-8 - 10-9A/cm2)、在電壓-電容曲線特徵圖更中可得知氧化物擁有一個高介電常數特性以及低的介面能階密度((2~6)×1011 cm-2eV-1)、並且在氧化物與半導體間呈現一個原子極平滑的穩定介面。
電子元件發展中,為了應映元件尺寸微縮,利用自我對準方法的元件製程製作反轉通道增強型N型金氧半場效電晶體,並研究探討金屬/氧化物/三五族半導體結構對於自我對準製程的相互需求及影響,使用通道材料為應變砷化銦鎵及砷化鎵、閘極氧化物為高介電常數氧化鎵與氧化釓混合物、閘極金屬則為氮化鈦。一個閘極線長及線寬分別為4及100微米的N型砷化銦鎵反轉通道增強型金氧半場效電晶體電性特徵如下:汲極電流為1.5 mA/mm at Vg=4V, Vd=2V;低閘極漏電流低於 <10-7A/cm2 ;非本質通道電導值為1.7 mS/mm at Vg=3V, Vd=2V;汲極電流開/關比值為105。砷化銦鎵及砷化銦鎵反轉通道增強型金氧半場效電晶體的關閉汲極漏電流亦低於10-5mA/mm,此外利用分離式電容電壓量測與元件電流的表現皆證明反轉通道的產生及氧化鎵與氧化釓混合氧化物/砷化銦鎵介面費米能階未被恰住。
TiN/Ga2O3(Gd2O3)[GGO]/GaAs and /In0.2Ga0.8As MOS diodes after rapid thermal annealing (RTA) to high temperatures of 750□C exhibit excellent electrical and structural performances: a low leakage current density of 10-8 - 10-9 A/cm2, well-behaved capacitance-voltage (C-V) characteristics giving a high dielectric constant of ~16 and a low interfacial density of state of ~(2~6)×1011 cm-2eV-1, and an atomically sharp smooth GGO/GaAs and /In0.2Ga0.8As interface.
A self-aligned process for fabricating inversion n-channel metal-oxide-semiconductor field-effect-transistors (MOSFET’s) of strained In0.2Ga0.8As- or GaAs-channel using TiN as gate metal and Ga2O3(Gd2O3) as high k gate dielectric has been developed. The In0.2Ga0.8As-channel NMOSFET with a 4 μm gate length and a 100 μm gate width exhibits a drain current of 1.5 mA/mm at Vg=4V and Vd=2V, a low gate leakage of <10-7A/cm2 at 1 MV/cm, an extrinsic transconductance of 1.7 mS/mm at Vg=3V, Vd=2V, and an on/off ratio of ~105 in drain current. Lower off-currents of ~10-5-10-6 mA/mm were measured on GaAs and In0.2Ga0.8As-channel NMOSFETs comparing with most of the previously results. Moreover, the split-CV and IV results certainly demonstrate the inversion n-channel on the TiN/GGO/In0.2Ga0.8As/GaAs NMOSFETs and the strong evidence of unpinned interface between GGO and In0.2Ga0.8As. But the split-CV results on TiN/GGO/GaAs NMOSFET indicate that the responding amount of carriers in the inversion region is not identical with that in the accumulation region in this work.
1.“DC and RF Characteristics of Depletion-mode GaAs MOSFET Employing a Thin Ga2O3/Gd2O3 Layer (74Å) as Gate Dielectric”, B. Yang, P. D. Ye, J. Kwo, M. R. Frei, H.-J. L. Gossmann, J. P. Mannaerts, M. Sergent, M. Hong, K. Ng, and J. Bude, Conf. Proc. 2002 GaAs IC Symposium, Monterey, CA, Oct., 2002.
2.“Theoretical characterization and high-speed performance evaluation of GaAs IGFET's”, K. Yamaguchi and S. Takahashi, IEEE Trans. Electron Dev. 28, 581, 1981.
3.“GaAs MOSFET High-speed logic”, Naoki Yokoyama, Takashi Mimura, Hirotsugu Kusakawa, Katsuhiko Suyama, and Masumi Fukuta, IEEE Tran. On Micro. And Tech. 28(5), 483, 1980.
4.“Planar GaAs MOSFET Integrated Logic”, Naoki Yokoyama, Takashi Mimura, and Masumi Fukuta, IEEE Tran. on Electron Dev. 27(6), 1125, 1980.
5.“Monte Carlo simulations of III–V MOSFETs”, K. Kalna, M. Borici, L. Yang, and A Asennov, Semicond. Sci. Technol. 19, 202, 2004.
6.“Semiconductor-insulator interfaces”, M. Hong, C. T. Liu, H. Reese, and J. Kwo in “Encyclopedia of Electrical and Electronics Engineering”, V.19, pp. 87-100, Ed. J. G. Webster, Published by John Wiley & Sons, New York, 1999, and references therein.
7.“Passivation of GaAs using (Ga2O3)1-x(Gd2O3)x, 0<x<1.0 films”, J. Kwo, D. W. Murphy, M. Hong, R. L. Opila, J. P. Mannaerts, R. L. Masaitis and A. M. Sergent: Appl. Phys. Lett., 75 1116, 1999.
8.“Fundamental study and oxide reliability of the MBE grown Ga2-xGdxO3 dielectrics for compound semiconductor MOSFET’s”, J. Kwo, M. Hong, J. P. Mannaerts, Y. D. Wu, Q. Y. Lee, B. Yang and T. Gustafsson, in Integration of Advanced Micro- and Nanoelectronic Devices - Critical Issues and Solutions, edited by J. Morais, D. Kumar, M. Houssa, R.K. Singh, D. Landheer, R. Ramesh, R.M. Wallace, S. Guha, and H. Koinuma (Mater. Res. Soc. Symp. Proc. 811, Warrendale, PA,, 2004, p. E1.12.
9.“Optical and electrical properties of amorphous GdxGa0.4-xO0.6 films in GdxGa0.4-xO0.6/Ga2O3 gate dielectric stacks on GaAs”, M. Passlack, N. Medendorp, S. Zollner, R. Gregory and D. Braddock: Appl. Phys. Lett., 84, 2521, 2004.
10.“Current conduction processes in high-k Gd0.31Ga0.1O0.59/Ga2O3 gate dielectric stacks on GaAs”, A. Chen M. Passlack, N. Medendorp, and D. Braddock: Appl. Phys. Lett., 84, 2325, 2004.
11.“Capacitance-voltage studies on enhancement-mode InGaAs metal-oxide- semiconductor field-effect transistor using atomic-layer-deposited Al2O3 gate dielectric”, Y. Xuan, H. C. Lin, and P. D. Ye and G. D. Wilk: Appl. Phys. Lett. 88, 263518, 2006.
12.“Interface studies of GaAs metal-oxide-semiconductor structures using atomic-layer-deposited HfO2/Al2O3 nanolaminate gate dielectric”, T. Yang, Y. Xuan, D. Zemlyar, T. Shen, Y. Q. Wu, J. M. Woodall, P. D. Ye, F. S. Aguirre-Tostado, M. Milojevic, S. Mcdonnel, R. M. Wallance, Appl. Phys. Lett. 91, 142122, 2007.
13.“Surface passivation of III-V compound semiconductors using atomic- layer- deposition-grown Al2O3”, M. L. Huang, Y. C. Chang, C. H. Chang, Y. J. Lee, P. Chang, J. Kwo, T. B. Wu and M. Hong: Appl. Phys. Lett., 87, 252104, 2005.
14.“InGaAs metal-oxide-semiconductor capacitors with HfO2 gate dielectric grown by atomic-layer deposition”, N. Goel, P. Majhi, C. O. Chui, W. Tsai, D. Choi and J. S. Harris, Appl. Phys. Lett. 89,163517. 2006.
15.“Metal-oxide-semiconductor capacitors on GaAs with high-k gate oxide and amorphous silicon interface passivation layer”, S. Koveshnikov, W. Tsai, I. Ok, J. C. Lee, V. Torkanov, M. Yakimov and S. Oktyabrsky, Appl. Phys. Lett., 88, 022106, 2006.
16.“Ultrathin HfO2 (equivalent oxide thickness=1.1nm) metal-oxide-semiconductor capacitors on n-GaAs substrate with germanium passivation”, H. S. Kim, I. Ok, M. Zheng, C. Choi, T. Lee, F. Zhu, G. Thareja, Lu Yu, and Jack C. Lee, Appl. Phys. Lett., 88, 252906, 2006.
17.“Metal Gate-HfO2 MOS Structures on GaAs Substrate With and Without Si Interlayer”, I. Ok, H. S. Kim, M. Zheng, C. Y. Kang, S. J. Rhee, C. Choi, S. A. Krishnan, T. Lee, F. Zhu, G. Thareja, and Jack C. Lee, IEEE Electron Dev. Lett., 27(3), 145, 2006.
18.“Molecular-beam epitaxy growth of device-compatible GaAs on silicon substrates with thin (~80nm) Si1-xGex step-graded buffer layers for high-k III-V metal-oxide-semiconductor field effect transistor applications”, M. M. Oye, D. Shahrjerdi, I. Ok, J. B. Hurst, S. D. Lewis,S.Dey, D. Q. Kelly, S. Joshi, T. J. Mattord, X. Yu, M. A. Wistey, J. S. Harris, Jr., A. L. Holmes, Jack C. Lee, and S. K. Banerjee, J. Vac. Sci. Technol., 25(3), 1098, 2007.
19.“Temperature effects of Si interface passivation layer deposition on high-k III-V metal-oxide-semiconductor characteristics”, InJo Ok, H. Kim, M. Zhang, F. Zhu, S. Park, J. Yum, H. Zhao, and Jack C. Lee, Appl. Phys. Lett., 91, 132104. 2007.
20. "Optimization of electrical characteristics of TiO2-incorporated HfO2 n-type doped gallium arsenide metal oxide semiconductor capacitor with silicon interface passivation layer”, Sung Il Park, Injo Ok, Hyoung-Sub Kim, Feng Zhu, Manhong Zhang, Jung Hwan Yum, Zhao Han, and Jack C. Lee, Appl. Phys. Lett., 91, 082908. 2007.
21.“ Evidence of electron and hole inversion in GaAs metal-oxide-semiconductor capacitors with HfO2 gate dielectrics and aSi/SiO2 interlayers”, S.J. Koester, E. W. Kiewra. Yanning Sun, D. A. Neumayer, J. A. Ott, M. Copel, D. K. Sadana, D. J. Webb, J. Fompeyrine, J. P. Locquet, C. Marchiori, M. Sousa, and R. Germann, Appl. Phys. Lett., 89, 042104. 2006.
22.“Impact of interfacial layer control using Gd2O3 in HfO2 gate dielectric on GaAs”, G. K. Dalapati, Yi Tong, W. Y. Loh, H. K. Mun, and B. J. Cho, Appl. Phys. Lett. 90, 183510, 2007.
23.“In Situ Silane Passivation of Gallium Arsenide and Deposition of High Permittivity Gate Dielectric for MOS Applications”, M. Zhu, H. C. Chin, C. H. Tung, Y. C. Yeo, Journal of Electrochemical Society, 154(10), H789, 2007.
24.“Annealing condition optimization and electrical characterization of amorphous LaAlO3/GaAs metal-oxide-semiconductor capacitors”, D. Choi, J. S. Harris, M. Warusawithana, and D. G. Schlom, Appl. Phys. Lett. 90, 243505, 2007.
25.“Metal-insulator-semiconductor structure on low-temperature grown GaAs”, A. Chen, M. Young, W. Li, T. P. Ma, and J. M. Woodall, Appl. Phys. Lett. 89, 235514, 2006.
26.“Demonstration of unpinned GaAs surface and surface inversion with gate dielectric made of Si3N4”, W. P. Li, X. W. Wang, Y. X. Liu, S. I. Shim, and T. P. Ma, Appl. Phys. Lett.90, 193503, 2007.
27.“Demonstration of enhancement-mdoe p- and n-channel GaAs MOSFET with Ga2O3(Gd2O3) as gate oxide”, F. Ren, M. Hong, W. S. Hobson, J. M. Kuo, J. R. Lothian, J. P. Mannaerts, J. Kwo, S. N. G. Chu, Y. K. Chen, and A. Y. Cho, Solid-State Electron. 41(11), 1751, 1997.
28.“Ga2O3(Gd2O3)/InGaAs Enhancement-Mode n-Channel MOSFET's”, F. Ren, J. M. Kuo, M. Hong, W. S. Hobson, J. R. Lothian, J. Lin, H. S. Tsai, J. P. Mannaerts, J. Kwo, S. N. G. Chu, Y. K. Chen, and A. Y. Cho, IEEE Electron Dev. Lett., 19(8), 309, 1998.
29.“Compound Semiconductor MOSFET's Using (Ga,Gd)2O3 as Gate Dielectric”, Y. C. Wang, M. Hong, J. M. Kuo, J. P. Mannaerts, J. Kwo, H. S. Tsai, J. J. Krajewski, J. S. Weiner, Y. K. Chen, and A. Y. Cho, Mat. Res. Soc. Symp. Proc. Vol. 573, 219, 1999.
30.“Capacitance-voltage studies on enhancement-mode InGaAs metal oxide semiconductor field-effect transistor using atomic-layer-deposited Al2O3 gate dielectric”, Y. Xuan, H. C. Lin, P. D. Ye, G. D. Wilk, Appl. Phys. Lett. 88, 263518, 2006.
31.“Self-Aligned n- and p-channel GaAs MOSFETs on Undoped and P-type Substrates Using HfO2 and Silicon Interface Passivation Layer”, InJo Ok, H. Kim, M. Zhang, T. Lee, F. Zhu, L. Yu, S. Koveshnikov, W. Tsai, V. Tokranov, M. Yakimov, S. Oktyabrsky, and Jack C. Lee, IEDM, 1, 2006.
32.“Submicrometer Inversion-Type Enhancement-Mode InGaAs MOSFET With Atomic-Layer-Deposited Al2O3 as Gate Dielectric”, Y. Xuan, Y. Q. Wu, H. C. Lin, T. Shen, and Peide D. Ye, IEEE Electron Device Letters, 28(11), 935, 2007
33.“High performance submicron inversion-type enhancement-mode InGaAs MOSFETs with ALD Al2O3, HfO2 and HfAlO as gate dielectrics”, Y. Xuan, Y. Q. Wu, T. Shen, and Peide D. Ye, IEDM, 673, 2007.
34.“Low interface state density oxide-GaAs structures fabricated by in situ molecular beam epitaxy”, M. Hong, M. Passlack, J. P. Mannaerts, J. Kwo, S. N. G. Chu, N. Moriya, S. Y. Hou and V. J. Fratello, J. Vac. Sci. Technol. B 14 No. 3, 2297, 1996.
35.“Novel Ga2O3(Gd2O3) passivation techniques to produce low Dit oxide-GaAs interfaces”, M. Hong, J. P. Mannaerts, J. E. Bowers, J. Kwo, M. Passlack, W. Y. Hwang and L. W. Tu, J. Cryst. Growth, 175-176, 422, 1997.
36.“Epitaxial Cubic Gadolinium Oxide as a Dielectric for Gallium Arsenide Passivation”, M. Hong, J. Kwo, A. R. Kortan, J. P. Mannaerts and A. M. Sergent, Science 283, 1897, 1999.
37.“Structure of epitaxial Gd2O3 films grown on GaAs(100)”, A. R. Kortan, M. Hong, J. Kwo, J. P. Mannaerts, and N. Kopylov, Physical review B, 60(15), 10913, 1999.
38.“Quasistatic and high frequency capacitance–voltage characterization of Ga2O3–GaAs structures fabricated by in situmolecular beam epitaxy”, M. Passlack, M. Hong, and J. P. Mannaerts, Appl. Phys. Lett., 68(8), 1099, 1996.
39.“C-V adn G-V characterization of in-situ fabricated Ga2O3-GaAs interfaces for inversion/accumulation device and surface passovation applications”, M. Passlack, M. Hong, and J. P. Mannaerts, Solid State Electronics, 39(8), 1133, 1996.
40.“Structural properties of Ga2O3(Gd2O3)–GaAs interfaces”, M. Hong, M. A. Marcus, J. Kwo, J. P. Mannaerts, A. M. Sergent, L. J. Chou, K. C. Hsieh, and K. Y. Cheng, J. Vac. Sci. Technol. B, 16(3), 1395, 1998.
41.“Passivation of GaAs using gallium-gadolinium oxides”, J. Kwo, D. W. Murphy, M. Hong, J. P. Mannaerts, R. L. Opila, R. L. Masaitis, and A. M. Sergent, J. Vac. Sci. Technol. B, 17(3), 1294, 1999.
42.“Initial growth of Ga2O3(Gd2O3) on GaAs: Key to the attainment of a low interfacial density of states”, M. Hong, Z. H. Lu, J. Kwo, A. R. Kortan, J. P. Mannaerts, J. J. Kjajewski, K. C. Hsieh, and K. Y. Cheng, Appl. Phys. Lett., 76(3), 312, 2000.
43.“Characteristics of Ga2O3(Gd2O3)/GaAs interface: Structures and compositions”, M. Hong, A. R. Kortan, J. Kwo, J. P. Mannaerts, J. J. Kjajewski, Z. H. Lu, K. C. Hsieh, and K. Y. Cheng, J. Vac. Sci. Technol. B, 18(3), 1688, 2000.
44.“Energy-band parameters at the GaAs- and GaN- Ga2O3(Gd2O3) interfaces”, T. S. Lay, M. Hong, J. Kwo, J. P. Mannaerts, W. H. Hung, D. J. Huang, Solid State Electronics, 45, 1679, 2001.
45.“Thermodynamic stability of Ga2O3(Gd2O3)/GaAs interface”, Y. L. Huang, P. Chang, Z. K. Yang, Y. J. Lee, H. Y. Lee, H. J. Liu J. Kwo, J. P. Mannaerts, and M. Hong, Appl. Phys. Lett., 86 (17), 191905, 2005.
46.“Structural and electrical characteristics of Ga2O3(Gd2O3)/GaAs under high temperature annealing”, C. P. Chen, Y. J. Lee, Y. C. Chang, Z. K. Yang, M. Hong, J. Kwo, H. Y. Lee, T. S. Lay, J. Appl. Phys., 100, 104052, 2006.
47.“Wet Chemical and Plasma Etching of Ga2O3(Gd2O3)”, F. Ren, M. Hong, J. P. Mannaerts, J. P. Lothian, J. Kwo, A. Y. Cho, J. Electronchem. Soc., 144, L239, 1997
48.“Rapid thermal annealing of ion-implanted GaAs”, B. J. Sealy, Semicond. Sci. Technol. 3, 448, 1988.
49.“Development of refractory ohmic contact materials for gallium arsenide compound semiconductors”, Masanori Murakami, Science and Technology of Advanced Materials, 3, 1, 2002.
50.“Optimization of AuGe–Ni–Au Ohmic Contacts for GaAs MOSFETs”, Hung-Cheng Lin, Sidat Senanayake, Keh-Yung Cheng, Minghwei Hong, J. Raynien Kwo, Bin Yang, and J. P. Mannaerts, IEEE Transcations on Electron Devices, 50(4), 880, 2003.
51.“Surface Studies of Solids by Total Reflection of X-Rays”, L. G. Parratt, Phys. Rev. 95, 359, 1954.
52.“Characterization of engineering surfaces by grazing-incidence X-ray reflectivity”, D. K. Bowen and B. K. Tanner, Nanotechnology, 4, 175, 1993.
53.“X-ray and neutron scattering from rough surfaces”, S. K. Sinha, E. B. Sirota, S. Garoff and H. B. Stanley, Phys. Rev. B 38, 2297, 1988.
54.“C-V and G-V characterisation of Ga203(Gd203)/GaN capacitor with low interface state density”, S. Lay, W. D. Liu, M. Hong, J. Kwo, and J. P. Mannaerts, Electronics Letters, 37, 9, 595, 2001.
55.“Semiconductor material and device characterization” D. K. Schroder, John Wiley & Sons, 1998.
56."Semiconductor physics and devcies, Basic Principles" Third Edition, Donald A. Neamen, 2002.
57."Solid state electronic devices" Fifth Edition, Ben. G. Streetman, and Sanjay Banerjee, 2001.
58."Semiconductor material and device characterization" Second Edition, Dieter K. Schroder.
59.“Nearly ideal InP/ln0.53Ga0.47As heterojunction regrowth on chemically prepared ln0.53Ga0.47As surfaces”, E. Yablonovitch, R. Bhat, C. E. Zah, T. J. Gmitter, and M. A. Koza, Appl. Phys. Lett. 60 (3), 671, 1992.
60.“Fermi-level pinning and charge neutrality level in germanium”, A. Dimoulas, P. Tsipas, and A. Sotiropoulos, E. K. Evangelou, Appl. Phys. Lett. 89 , 252110, 2006.
61.“Evidence for strong Fermi-level pinning due to metal-induced gap states at metal/germanium interface”, Tomonori Nishimura, Koji Kita, and Akira Toriumi, Appl. Phys. Lett. 91 , 123123, 2007.
62.“Substrate engineering for high-performance surface-channel III-V metal oxide semiconductor field-effect transistors”, Yi Xuan and Peide D. Ye, and T. Shen, Appl. Phys. Lett. 92 , 232107, 2007.
63.“Extreme band bending at MBE-grown InAs(001) surfaces induced by in situ sulphur passivation”, M.J. Lowe, T.D. Veal, C.F. McConville, G.R. Bellb, S. Tsukamoto, and N. Koguch, Journal of Crystal Growth, 237-239, 196, 2002.
64.“ Surface and interface barriers of InxGa1-xAs binary and ternary alloys”, H. H. Wieder, J. Vac. Sci. Technol. B 21(4), 1915, 2003.
65.“Empirical expressions for the alloy composition and temperature dependence of the band gap and intrinsic carrier density in GaxIn1-xAs”, Sajal Paul, J. B. Roy, and P. K. Basu, J. Appl. Phys. 69 (2), 827, 1991.
66.“Band offsets of high K gate oxides on III-V semiconductors”, J. Robertson and B. Falabretti, J. Appl. Phys. 100, 014111, 2006.
67.“Oxide scalability in Al2O3/Ga2O3(Gd2O3)/In0.2Ga0.8As/GaAs heterostructures”, K. H. Shiu, C. H. Chiang, Y. J. Lee, W. C. Lee, P. Chang, L. T. Tung, M. Honga, J. Kwo, and W. Tsai, J. Vac. Sci. Technol. B(26)3, 1132
68.“1 nm equivalent oxide thickness in Ga2O3(Gd2O3)/In0.2Ga0.8As metal-oxide semiconductor capacitors”, K. H. Shiu, T. H. Chiang, P. Chang, L. T. Tung, M. Honga, J. Kwo, and W. Tsai, Appl. Phys. Lett. 92 , 172904, 2008
69.“Physics and Chemistry of Ⅲ–ⅤCompound Semiconductor Interfaces”, D. L. Lile, in C. W. Wilmsen (ed), New York, Plenum, p. 332, 1985
70.“Semiconductor devices, physics and technology”, S.M. Sze, Wiley, 1985
71.“New and unified model for shottky barrier and III-V insulator interface states formation”, W. E. Spicer, P. W. Spicer, P. R. Skeath, C. Y. Su, and I. Lindau, J. Vac. Sci. Technol. 15, 1422, 1979
72.“The advanced unified defect model for schottky barrier formation”, W. E. Spicer, Z. Liliental-Weber, E. Weber, N. Newman, T. Kendelewicz, R. Cao, C. McCants, P. Mahowald, K. Miyano, and I. Lindau, J. Vac. Sci. Technol. B, 6, 1245, 1988
73.“Scanning tunneling microscopy and spectroscopy of gallium oxide deposition and oxidation on GaAs(001)-c(2×8)/(2×4)”, M. J. Hale, S, I. Yi, J. Z. Sexton, A. C. Kummel, and M. Passlack, Journal of Chemical Physics, 119, 6