研究生: |
蔡岳霖 Tsai, Yueh-Lin |
---|---|
論文名稱: |
建構螢火蟲發光器內氣管系統之立體影像 Constructing Three Dimensional Images of Tracheal System in the Lantern of Fireflies |
指導教授: |
李家維
Li, Chia-Wei 何健鎔 Ho, Jen-Zon |
口試委員: |
洪在明
Hong, Tzay-Ming 張兗君 Chang, Yen-Chung |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 61 |
中文關鍵詞: | 氣管系統 、螢火蟲 、發光器 、X 光 、立體影像 、氧氣擴散 |
外文關鍵詞: | tracheal system, firefly, lantern, x-ray, 3D image, oxygen diffusion |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
昆蟲組織依靠氣管系統獲得外界的氧氣,氣管系統始於體表的氣孔,延伸進入體內後分支為樹狀散布於各種組織當中。擴散,是目前最普遍用於解釋氣管輸送氧氣的機制,但是不透明的外骨骼和組織妨礙關於氣管輸送氧氣效率的量化分析。因此,本研究利用同步輻射X光斷層攝影術建構螢火蟲發光器氣管系統之三維影像,解析度可達 3 μm。此外,本研究亦利用穿透式 X 光顯微鏡拍攝直徑 0.2 μm 的微氣管影像,解析度可達 40 nm。
螢光反應場所位於發光器的發光細胞內,需要氧氣流入才會驅動發光。以往認為當發光器處於暗期,微氣管內可能具有體液阻止氧氣流進發光細胞;當細胞發亮時,體液被組織吸收,氧氣可擴散進入發光細胞。但是本研究對氣管系統進行量化分析發現,鄰近微氣管的粒線體可能會耗盡進入組織的氧氣。本研究另利用即時 X 光攝影,發現螢火蟲發光器的氣管有收縮的現象,顯示氣管可能利用強制對流輸送氣體。但是收縮現象侷限於小範圍,沒有擴及多處氣管,氣管分支亦沒遵循 Murray 定律,因此強制對流可能不是主要的呼吸機制。
螢火蟲發光是否消耗許多能量至今仍不是很清楚。由於氣管的表面積密度與該組織的氧氣消耗量具有相關性,分析顯示雄性發光器氣管表面積密度接近其他昆蟲的跳躍肌內的氣管。同時,本研究亦近距離量測三種螢火蟲的最大發光亮度,顯示每立方公分的發光組織,隨著性別與種類的不同,每秒需 5 ~ 40 nmol 的氧氣用於發光。這個數值範圍與蝗蟲幼蟲跳躍時需消耗的氧氣量部分重疊 (~ 40 nmol/cm3/sec)。因此,發光的最高耗氧量可能相當接近蝗蟲幼蟲的跳躍行為。
Most insect tissues acquire ambient oxygen through tracheal system, which originates from the exoskeleton, subdivides into bronchial conduits and spreads in whole insect body. Although diffusion has been proposed to be the primary mechanism for tracheal system to convey oxygen, difficulties in looking through the opaque exoskeletons and tissues impede quantitative analysis of tracheal capacity for oxygen diffusion. Here, we demonstrate three dimensional tracheal images in the lantern of fireflies with 3 μm spatial resolution by using synchrotron phase-contrast micro-tomography. Terminal branches of tracheal system (tracheoles) with a diameter of 0.2 μm were viewed by Transmission X-ray Microscopy (TXM) with spatial resolution of 40 nm.
Oxygen contained in lantern tracheal system plays important role in triggering bioluminescent reaction in light emission cells (photocytes). It was previously held that during lantern is at quenching state, oxygen going to the photocytes from tracheal system was presumed to be impeded by fluids contained in tracheoles. Bioluminescence was triggered by the withdrawal of tracheolar fluids by tracheolar and tracheal end cells, facilitating oxygen diffuse into the photocytes. However, quantitative analysis of lantern tracheal system shows that diffusion though, is extremely efficient in air-filled tracheas, oxygen may be used up by mitochondria adjacent to the tracheoles. Though tracheal compression in lantern implies forced convection as a mean of respiration, the limited compressing area and the inconsistence tracheal branches to Murray’s law make it unlikely for forced convection as primary mechanism.
Energy expenditure of firefly light emission was reported with distinct values. Analysis of tracheal surface density in male’s lantern shows that the gas exchange capacity is close to insect jumping muscles. Measurement of bioluminescent intensity in three species of fireflies at close distance shows that maximum bioluminescent intensity range from 0.75 ~ 4.6 x 1012 photons per second, which indicates volume-specific oxygen consumption rate of 5 ~ 40 nmol per cm3 tissue per second. The range is partially overlapped with that of jumping behavior of juvenile locusts (~ 40 nmol/cm3/sec). We thus suggest that lantern is a moderately active organ, varying with species and genders.
Ando, Y., K. Niwa, et al. (2007). "Firefly bioluminescence quantum yield and colour change by pH-sensitive green emission." Nature Photonics 2(1): 44-47.
Aprille, J. R., C. J. Lagace, et al. (2004). "Role of nitric oxide and mitochondria in control of firefly flash." Integrative and Comparative Biology 44(3): 213-219.
Beams, H. W. and E. Anderson (1955). "Light and Electron Microscope Studies on the Light Organ of the Firefly (Photinus pyralis)." The Biological Bulletin 109(3): 375-393.
Branham, M. A. and M. D. Greenfield (1996). "Flashing males win mate success." Nature 381: 745-746.
Buck, J. (1962). "Some physical aspects of insect respiration." Annual Review of Entomology 7: 27-56.
Carlson, A. D. and J. Copeland (1985). "Flash Communication of Fireflies." The Quarterly Review of Biology 60(4): 415-436.
Chapman, R.F. (1998). “The Insects: Structure and Function.” (ed 4.) Cambridge, U.K.: Cambridge University Press,
Chien, C. C., H. H. Chen, et al. (2012). "Gold nanoparticles as high-resolution X-ray imaging contrast agents for the analysis of tumor-related micro-vasculature." Journal of Nanobiotechnology 10: 10.
Cratsley, C. K. and S. M. Lewis (2003). "Female preference for male courtship in Photinus ugnitus fireflies." Behavioral Ecology 14(1): 135-140.
Crespigny, F. E. C. d. and D. J. Hosken (2007). "Sexual selection: Signals to die for." Current Biology 17(9): 853-855.
Ghiradella, H. (1977). "Fine structure of the tracheoles of the lantern of a photurid firefly." Journal of Morphology 153(2): 187-203.
Ghiradella, H. (1983). "Permeable sites in the firefly lantern tracheal system: Use of osmium tetroxide vapor as a tracer." Journal of Morphology 177(2): 145-156.
Ghiradella, H. and J. T. Schmidt (2004). "Fireflies at one hundred plus: A new look at flash control." Integrative and Comparative Biology 44: 203-212.
Hanna, C. H., T. A. Hopkins, et al. (1976). "Peroxisomes of the firefly lantern." Journal of Ultrastructure Research 57(2): 150-162.
Harrison, J. F. and S. P. Roberts (2000). "Flight Respiration and Energetics." Annual Review of Physiology 62: 179-205.
Hastings, J. W., W. D. McElroy, et al. (1953). "The effect of oxygen upon the immobilization reaction in firefly luminescence." Journal of Cellular Physiology 42(1): 137-150.
Hess, W. N. (1921). "Tracheation of the light-organs of some common Lampyridae." The Anatomical Record 20: 154-161.
Kaiser, A., C. J. Klok, et al. (2007). "Increase in tracheal investment with beetle size supports hypothesis of oxygen limitation on insect gigantism." Proceedings of National Academy of Sciences U S A 104(32): 13198-13203.
Kestler, P. (1984). “Respiration and respiratory water loss. In Environmental Physiology and Biochemistry of Insects.” (ed. K. H. Hoffman), pp. 137-183. New York: Springer-Verlag.
Kirkton, S. D., L. E. Hennessey, et al. (2012). "Intermolt development reduces oxygen delivery capacity and jumping performance in the American locust (Schistocerca americana)." Journal of Comparative Physiology B 182(2): 217-230.
Kluss, B. C. (1958). "Light and electron microscope observations on the photogenic organ of the firefly, photuris Pennsylvanica, with special reference to the innervation." Journal of Morphology 103(1): 159-185.
Krogh, A. (1920). “Studien iiber Tracheenrespiration. II. Uber Gasdiffusion in den Tracheen.Pflugers.” Arch. Ges. Physiol 179, 95-120.
Loudon, C. (1989). "Tracheal hypertrophy in mealworms: Design and plasticity in oxygen supply systems." The Journal of Experimental Biology 147: 217-235.
Maina, J. N. (2000). "Comparative respiratory morphology: Themes and principles in the design and construction of the gas exchangers." The Anatomical Record 261(1): 25-44.
Nielsen, S.K. (1997). “Animal Physiology: Adaptation and environment.” (ed 5.) Cambridge, U.K.: Cambridge University Press.
Nunome, Z. (1944). “Studies on the respiration of the silkworm. I. Diffusion of oxygen in the respiratory system of the silkworm.” Bull. Sericult. Expt. Sta 12: 17-39.
Nunome, Z. (1944). “Studies on the respiration of the silkworm. II. Several measurements in the respiratory organ.” Bull. Sericu,lt. Expt. Sta 12: 41-90.
Peterson, M. K. and J. Buck (1968). "Light organ fine structure in certain Asiatic Fireflies." The Biological Bulletin 135(2): 335-348.
Seliger, H. H., J. B. Buck, et al. (1964). "Flash Patterns in Jamaican Fireflies." The Biological Bulletin 127(1): 159-172.
Sherman, T. F. (1981). "On connecting large vessels to small: The meaning of Murray's law." The Journal of General Physiology 78: 431-453.
Siegel, E.R., L. A. Bonachea, et al. (2008). “Influence of predation risk on male courtship and mate choice in sailfin mollies, Poecilia latipinna.” University of Texas, Austin.
Smith, D. S. (1963). "The Organization and Innervation of the Luminescent Organ in a Firefly, Photuris Pennsylvanica (Coleoptera)." Journal of Cell Biology 16(2): 323-359.
Snelling, E. P., R. S. Seymour, et al. (2011). "Scaling of resting and maximum hopping metabolic rate throughout the life cycle of the locust Locusta migratoria." The Journal of Experimental Biology 214: 3218-3224.
Snelling, E. P., R. S. Seymour, et al. (2011). "Symmorphosis and the insect respiratory system: allometric variation." The Journal of Experimental Biology 214: 3225-3237.
Socha, J. J., T. D. Förster, et al. (2010). "Issues of convection in insect respiration: Insights from synchrotron X-ray imaging and beyond." Respiratory Physiology and Neurobiology 173: S65-S73.
Timmins G. S, P. C., Bechara EJ, Swartz HM. (1999). "Measurement of oxygen partial pressure, its control during hypoxia and hyperoxia, and its effect upon light emission in a bioluminescent elaterid larva." The Journal of Experimental Biology 202: 2631-2638.
Timmins, G. S., E. J. H. Bechara, et al. (2000). "Direct determination of the kinetics of oxygen diffusion to the photocytes of a bioluminescent elaterid larva, measurement of gas- and aqueous-phase diffusional barriers and modelling of oxygen supply." The Journal of Experimental Biology 203: 2479-2484.
Timmins, G. S., F. J. Robb, et al. (2001). "Firefly flashing is controlled by gating oxygen to light-emitting cells." The Journal of Experimental Biology 204: 2795-2801.
Trimmer, B. A., J. R. Aprille, et al. (2001). "Nitric oxide and the control of firefly flashing." Science 292(5526): 2486-2488.
Weis-Fogh, T. (1964). "Diffusion in insect wing muscle: The most active tissue known." The Journal of Experimental Biology 41: 229-256.
Westneat, M. W., O. Betz, et al. (2003). "Tracheal respiration in insects visualized with synchrotron x-ray imaging." Science 299(5606): 558-560.
Woods, W. A., Jr., H. Hendrickson, et al. (2007). "Energy and predation costs of firefly courtship signals." The American Naturalists 170(5): 702-708.