研究生: |
鄭智軒 |
---|---|
論文名稱: |
應用於毫米波之矽基板氮化鎵 高電子遷移率電晶體設計與製作 Design and Fabrication of AlGaN/GaN HEMTs on Silicon Substrates for Millimeter-Wave Applications |
指導教授: | 徐碩鴻 |
口試委員: |
林意茵
徐永珍 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 59 |
中文關鍵詞: | 氮化鎵 、高電子遷移率電晶體 、矽基板 、毫米波 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,氮化鎵高電子遷移率電晶體(GaN-based HEMTs)不管在功率電路與高頻電路的應用上上都具有相當驚人的發展潛力。早期HEMTs在基板的選擇上通常是採用Sapphire或是SiC材料,但最近Si基板也漸漸成為HEMT基板的選擇,由於考量到價格較低廉以及未來與CMOS的結合上,讓Si基板嚴然成為投入研究的議題。本論文著重在矽基板(Si substrates)之AlGaN/GaN HEMTs之元件設計及進一步的模型分析,並藉由等校模型分析所得到的結果提出幾種可以有效提升在矽基板上之GaN HEMT 元件之RF特性。首先我們利用縮小元件尺寸以及製作T型閘極結構來提高元件的高頻特性,並從中觀察元件佈局對其高頻特性的影響,進而得到元件佈局之最佳化設計。另外本論文藉由製作不同之閘極寬度觀察對元件高頻特性以及短通道效應對元件高頻特性的影響。本研究中所製作出之元件 fT達到35GHz以上,f_MAX 可達到100GHz以上( g_m=225"mS" ⁄"mm" ,I_d=822"mA" ⁄"mm" )。
另外本論文藉由分析不同元件佈局條件下之小訊號等校模型進一步得知更改不同佈局參數的條件時,元件等效電路內部之電容電阻參數對其高頻特性的影響。本論文最後則是藉由建立等效基板模型來模擬矽基板對元件高頻特性的影響,由於在氮化鎵緩衝層與矽基板接面處會產生一層寄生的反轉電子層,因而在高頻下使汲極與源極間形成額外的損耗路徑。
我們發現寄生的R_sub 〖與C〗_sub會嚴重影響元件的高頻功率輸出特性,因此藉由此等效電路所萃取的參數值可以評估不同矽基板之氮化鎵磊晶試片是否適合使用在高頻元件上,我們未來也可藉由此一分析方法做為依據來設計元件架構或本身基板磊晶結構,以改善基底功率散逸對元件特性的影響。
In recent years, GaN-based HEMTs have great potentials for high power and RF applications. The candidate of substrate for HEMTs was usually Sapphire or SiC material in previous day, however, Si has gradually been the choice of substrate for HEMTs recently. The GaN-based HEMT on silicon substrate, due to low cost and the integration to CMOS in the future work, has become a popular research topic.
In this thesis, we focus on the design of AlGaN/GaN HEMTs on silicon substrate and a small signal equivalent circuit modeling for AlGaN/GaN HEMTs. And by the results of the equivalent circuit model analysis, we propose some methods which can extremely improve the RF characteristics of AlGaN/GaN HEMTs.
First part of this thesis, for the purpose of improving the RF device characteristics, we scale down the device size and fabricate T-shaped gate structure. Then we investigate how the device layout affects the RF performance of AlGaN/GaN HEMTs, resulting in the design of optimized device layout. Second part of this thesis, we investigate how the short channel effect and the gate length (Lg) affects the RF performance. In this study, we have fabricated 2×(0.2×25) m AlGaN/GaN HEMTs grown on (111) high resistivity Si substrate with f_T more than 35 GHz and f_MAX more than 100 GHz (g_m=225"mS" ⁄"mm" ,I_d=822"mA" ⁄"mm" ).
Furthermore, by the analysis of the equivalent circuit model for different device layout, we figure out how the intrinsic parameters like capacitors and resistors affect the RF characteristics of devices. Final part of this thesis, we use the small signal equivalent circuit model to simulate the Si substrate parasitic effect, which largely affects the RF performance of the devices. Due to the GaN/Si structure, there will have high impact ionization and high electron density layer at the Si interface indicating a parasitic leakage path which decreases power at the high frequencies.
We figure out that the parasitic parameters such as Rsub and Csub provided by Si substrate largely affect devices’ output power for high frequency operations. By the parameters extracted by this small signal extraction modeling method, we can evaluate what kind of the substrate structure or the material suits for RF devices. In the future, we will use this extraction method as a basis for deign layer structure or device layout, in order to improve the RF performance of the devices.
[1] H. F. Sun , A. R. Alt, H. Benedickter, and C. R. Bolognesi, “High performance 0.1μm gate AlGaN/GaN HEMTs on silicon with low-noise figure at 20 GHz,” IEEE Electron Device Lett., vol. 30, no. 2, pp. 107–109, Feb. 2009.
[2] F. Qian, J. H. Leach, and H. Morkoc, “Small signal equivalent circuit modeling for AlGaN/GaN HFET: Hybrid extraction method for determining circuit elements of AlGaN/GaN HFET,” Proc. IEEE, vol. 98, no. 7, pp. 1140–1150, Jul. 2010.
[3] L. F. Eastman and U. K.Mishra, “The toughest transistor yet,” IEEE spectrum, 39(5), pp. 28-33, 2002.
[4] Ambacher, “Growth and applications of group III-nitrides,” J. Physics D (Applied Physics), vol. 31, pp. 2653-2710, 1998.
[5] S. M. Sze, Physics of Semiconductor Devices, 2nd ed., Wiley, New York, 1981.
[6] B. Gelmont, K. Kim, and M. Shur, “Monte Carlo Simulation of Electron Transport in Gallium Nitride,” J. Appl. Phys., 74 (3), pp. 1818-1821, 1993.
[7] B. J. Baliga, “Trends in power semiconductor devices,” IEEE Transaction on Electron Devices, 43(10), pp. 1717-1731, 1996.
[8] J. L. Hudgins, G. S. Simin, E.Santi and M.A. Khan, “An Assessment of Wide Bandgap Semiconductors for Power Devices,” IEEE trans. on power electronics, 18(3), pp. 907-914, 2003.
[9] G. H. Jessen, R. C. Fitch, J. K. Gillespie, G. Via, A. Crespo, D. Langley, D. J. Denninghoff, M. Trejo, and E. R. Heller, “Short-channel effect limitations on high-frequency operation of AlGaN/GaN HEMTs for T-Gate devices,” IEEE Trans. Electron Devices, vol. 54, no. 10, pp. 2589–2597, Oct. 2007.
[10] J. W. Chung, W. E. Hoke, E. M. Chumbes, and T. Palacios, “AlGaN/GaN HEMT with 300 GHz fmax,” IEEE Electron Device Lett., vol. 31, no. 3, pp. 195–197, Mar. 2010.
[11] Binari S C, Klein P B and Kazior T E, “Trapping effects in GaN and SiC microwave FETs,” Proc. IEEE 90 1048, 2002.
[12] S. Arulkumaran, G. I. Ng, and Z. H. Liu, “Effect of gate-source and gate-drain Si3N4 passivation on current collapse in AlGaN/GaN high-electron-mobility transistors on silicon,” Appl. Phys. Lett. 90, 173504 (2007).
[13] T. Palacios, S. Rajan, A. Chakraborty, S. Heikman, S. Keller, S. P. DenBaars, and U. K. Mishra, “Influence of the dynamic access resistance in the gm and fT linearity of AlGaN/GaN HEMTs,” IEEE Trans. Electron Devices, vol. 52, no. 10, pp. 2117–2123, Oct. 2005.
[14] D. Xiao, D. Schreurs, W. De Raedt, J. Derluyn, M. Germain, B. Nauwelaers, and G. Borghs, “Detailed analysis of parasitic loading effects on power performance of GaN-on-silicon HEMTs,” Solid State Electron., vol. 53, no. 2, pp. 185–189, Feb. 2009.
[15] M. Berroth and R. Bosch, “High-frequency equivalent circuit of GaAs FETs for large-signal applications,” IEEE Trans. Microw. Theory Tech., vol. 39, no. 2, pp. 224–229, Feb. 1991.
[16] A. Jarndal and G. Kompa, “A new small signal model parameter extraction method applied to GaN devices,” presented at the IEEE MTT-S Int. Microwave Symp., Long Beach, CA, Jun. 2005.
[17] T. Enoki, K. Arai, and Y. Ishii, “Delay time analysis for 0.4- to 5-μm gate InAlAs-InGaAs HEMTs,” IEEE Electron Device Lett., vol. 11, pp. 502–504, Nov. 1990.
[18] H.-K. Lin, F.-H. Huang, and H.-L. Yu, “DC and RF characterization of AlGaN/GaN HEMTs with different gate recess depths,” Solid State Electron., vol. 54, no. 5, pp. 582–585, May 2010.
[19] Wideband Distributed Amplifiers in a Hybrid
[20] H. Sun, A. R. Alt, S. Tirelli, D. Marti, H. Benedickter, E. Piner, and C. R. Bolognesi, “Nanometric AlGaN/GaN HEMT performance with implant or mesa isolation,” IEEE Electron Device Lett., vol. 32, no. 8, pp. 1056–1058, Aug. 2011.
[21] S. Tirelli, D. Marti, H. Sun, A. R. Alt, H. Benedickter, E. L. Piner, and C. R. Bolognesi, “107-GHz (Al,Ga)N/GaN HEMTs on Silicon With Improved Maximum Oscillation Frequencies,” IEEE Electron Device Letters, vol. 31, no. 4, pp. 296–299, April 2010.
[22] D. Visalli, M. Van Hove, P. Srivastava, J. Derluyn, J. Das, M. Leys, S. Degroote, K. Cheng, M. Germain, and G. Borghs, “Experimental and simulation study of breakdown voltage enhancement of AlGaN/GaN HFETs by Si substrate removal,” Appl. Phys. Lett., vol. 97, no. 11, pp. 113 501-1–113 501-3, Sep. 2010.