簡易檢索 / 詳目顯示

研究生: 蔡弼任
Pi-Jen Tsai
論文名稱: 注入傳統波段信號之復行長波段掺鉺光纖放大器
Double-Pass L-band EDFA Through C-band Signal Injection
指導教授: 馮開明
Kai-Ming Feng
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 85
中文關鍵詞: 復行長波段掺鉺光纖放大器前向後向
外文關鍵詞: Double-Pass, L-band, EDFA, forward, backward
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中,我們針對長波段掺鉺光纖放大器進行研究,探討掺鉺光纖的長度以及幫激雷射的功率對光纖放大器的增益與雜訊指數的影響。近幾年來,長波段掺鉺光纖放大器受到高度重視。首先,我們先使用模擬軟體來模擬我們所提出的復行(double-pass)長波段架構,即ㄧ開始先在第一級的掺鉺光纖之前注入傳統波段信號來改進雜訊指數及增益的特性,並且在第二級的掺鉺光纖之後加上一個反射鏡,使之來回兩次來進行放大。跑模擬時,我們藉由調整兩級掺鉺光纖的長度以及兩級幫激雷射的功率來設計適合WDM系統使用的長波段放大器,而不需額外再加任何的增益等化器。後來我們調出最佳化的結果,我們在1600 nm輸入-30 dBm,以及在進入第一級掺鉺光纖之前我們先注入功率為-10 dBm的1550 nm波段的信號,第一級和第二級的掺鉺光纖長度分別為30公尺和50公尺,而第一級和第二級的幫激雷射功率分別操作在40 mW和60 mW。在這個復行(double-pass)的長波段系統中,我們模擬結果出來最佳的輸出的增益在45 dB,雜訊指數在4.5 dB。當模擬出最佳工作條件後,我們就實際去架設我們所提出的復行(double-pass)長波段放大器,並且量測實驗結果,而實驗結果,放大器的增益為39.40 dB,雜訊指數為5.22 dB,與2003年別人提出的(double-pass)架構相比較,發現我們量測的雜訊指數與他們差不多,但我們的增益比他們高5.9 dB。我們也用理論模擬的方法分析與實驗相同架構之長波段掺鉺光纖放大器的特性,模擬的結果與實驗的結果趨勢相當吻合。


    In this thesis, we investigate the amplification characteristics of L-band (1570 nm ~ 1610 nm) erbium-doped fiber amplifier (EDFA) by employing the 980 nm forward pumping configuration. In recent years, double-pass long wavelength band EDFAs are attractive. A new double-pass L-band EDFA with enhanced noise figure (NF) and gain characteristics is demonstrated by injecting C-band signal in front of a double-pass amplifier. We use an optical reflector to reroute the optical signals back to the same piece of EDF so as to amplify the optical signals twice. Then, we adjusted the length of erbium-doped fiber (EDF) and the power of pump laser to achieve the flat amplification characteristics in the 1570 nm ~ 1610 nm wavelength region without using gain equalizers. With an injection of -10 dBm at 1550 nm, 5.9 dB of gain enhancement for -30 dBm input at 1600 nm was achieved. The new double-pass system has demonstrated to achieve a flat-gain output at about 45 dB, and a NF of about 4.5 dB in this region. We used simulation tools to investigate the characteristics of L-band EDFA with the same configuration. The NF of proposed L-band EDFA is 5.22 dB, and the gain is 39.40 dB. The simulated results are similar with the experimental results.

    CONTENTS Chinese Abstract…………………………………...I English Abstract…………………………………..II Acknowledgements………………………………III Contents…………………………………………..IV List of Tables………………………………….....VII List of Figures…………………………………..VIII Chapter 1 General Introduction..........................1 1.1 Background of research…………………………………..1 1.2 Motivation of this research……………………………….2 1.3 Structure of the thesis…………………………………….3 Chapter 2 Basic Principle of Erbium-Doped Fiber Amplifier…………………………………….4 2.1 Basic characteristic of erbium-doped fiber amplifier….4 2.1.1 Validity of the two-level approach…………………………6 2.1.2 Generalized rate equations…………………………………7 2.1.3 Amplified spontaneous emission………………………….10 2.1.4 Average inversion relationship……………………………13 2.2 Noise figure analysis of erbium-doped fiber amplifier.15 2.3 Comparison between 980 nm and 1480 nm…………...23 2.4 Amplified principle of L-band erbium-doped fiber amplifier…………………………………………………25 2.5 Power conversion efficiency……………………………28 Chapter 3 Simulated Results and Discussions of L-band Erbium-Doped Fiber Amplifier………...30 3.1 Previous work…………………………………………..30 3.2 Difference between single pass and double pass structures……………………………………………….31 3.3 Improvement of double pass structure………………..33 3.4 Replace a short length of EDF with C-band source injection………………………………………………...34 3.4.1 Principle of C-band injection mechanism………………..34 3.4.2 Different double pass structure…………………………...36 3.4.2-1 Bidirectional pump structure…………………...36 3.4.2-2 Forward pump structure………………………..37 3.4.2-3 Backward pump structure………………………38 3.4.2-4 Backward pump with un-pumped EDF structure………………………………………….38 3.4.2-5 Two-stage backward pump structure…………..39 3.4.2-6 Two-stage forward pump structure……….........39 3.5 Simulation results of our proposed L-band EDFA…...42 3.5.1 Noise figure/Gain vs. wavelength………............................42 3.5.2 NF/Gain as a function of pump power………....................42 3.5.3-1 NF as a function of EDF length…………………………45 3.5.3-2 adjusting EDF length……………………………………45 3.5.4-1 NF as a function of signal’s input power……………….48 3.5.4-2 adjusting the input signal power………………………..48 Chapter 4 Experimental Results and Discussions of L-band Erbium-Doped Fiber Amplifier……..59 4.1 Introduction……………………………………………..59 4.2 Experimental structure and setup……………………..59 4.2.1 Measure the characteristic of components………………61 4.3 Effect on different signal’s input power and wavelength………………………………………………………69 4.3.1 Noise figure vs. signal’s wavelength………........................69 4.3.2 Gain vs. wavelength………………......................................69 4.4 Effect on different pump power……………………………...71 4.4.1 Noise figure vs. signal’s wavelength………........................71 4.4.2 Gain vs. signal’s wavelength………………........................71 4.5 Effect on different resolution…………………………...73 4.5.1 Noise figure vs. signal’s wavelength………........................73 4.5.2 Gain vs. signal’s wavelength………………........................73 Chapter 5 Conclusion…………………………..79 Reference………………………………………….81 List of Tables Table 3.1: The power of input signal is -30 dBm. The power of pump laser 1 is 40 mW and the power of pump laser 2 is 60 mW. The length of EDF1 and EDF2 are 33 m and 33 m, respectively…………………………………………………50 Table 4.1: The table of experimental instruments………………………………………..60 Table 4.2: We compared with the insertion loss of reflector and the loss of splice……...68 Table 4.3: The power of input signal is -30 dBm, for a 30/50 m fiber, and 103 mW total pump power, with 42 mW and 61 mW in the 1st and the 2nd stage, respectively…………………………………………………………………..68 Table 4.4: The power of input signal is -30 dBm. The wavelength of signal is 1600 nm. And for a 80 m long EDF, with 30 m and 50 m in the 1st and the 2nd stage, respectively…………………………………………………………………..68 Table 4.5: The experimental results of the best NF and the gain from Figure 4.11……...76 List of Figures Figure 1.1: The structure of single pass forward pump EDFA……………………………2 Figure 2.1: The three-level system with erbium ion used for the amplifier model……….5 Figure 2.2: Absorption (solid line) and emission (dashed line) cross sections of Er3+ near 1.5μm, for an Al-Ge-Er-doped silica fiber……………………………….......25 Figure 2.3: Gain coefficient vs. wavelength in different population inversion conditions…………………………………………………………………….26 Figure 2.4: The amplified model figure of L-band EDFA……………………………….28 Figure 3.1: Gain enhancement in L-band loop EDFA through C-band signal injection…31 Figure 3.2: Double-pass L-band EDFA with enhanced noise figure…………………….31 Figure 3.3: The structure of single pass forward pump EDFA…………………………..32 Figure 3.4: The structure of double pass forward pump EDFA………………………….32 Figure 3.5: ASE of forward pump in double pass structure……………………………...34 Figure 3.6: ASE of backward pump in double pass structure……………………………34 Figure 3.7: The structure of C-band signal injection…………………………………….36 Figure 3.8: The structure of bidirectional pump…………………………………………37 Figure 3.9: The structure of forward pump………………………………………………37 Figure 3.10: The structure of backward pump…………………………………………...38 Figure 3.11: The structure of backward pump with un-pumped EDF…………………...39 Figure 3.12: The two-stage structure of backward pump………………………………..39 Figure 3.13: The two-stage structure of forward pump………………………………….40 Figure 3.14(a): The six structure NF comparison of double pass EDFA………………...41 Figure 3.14(b): The six structure gain comparison of double pass EDFA……………….41 Figure 3.15(a): Adjust different power of pump laser 1 to demonstrate NF……………..43 Figure 3.15(b): Adjust different power of pump laser 1 to demonstrate gain………........43 Figure 3.16(a): Adjust different power of pump laser 2 to demonstrate NF……………..44 Figure 3.16(b): Adjust different power of pump laser 2 to demonstrate gain………........44 Figure 3.17(a): Adjust different length of EDF1 to demonstrate NF…………………….46 Figure 3.17(b): Adjust different length of EDF1 to demonstrate gain…………………...46 Figure 3.18(a): Adjust different length of EDF2 to demonstrate NF…………………….47 Figure 3.18(b): Adjust different length of EDF2 to demonstrate gain…………………...47 Figure 3.19(a): I adjust TLS to observe the change of NF. L band: 1570 nm ~ 1610 nm, C band: 1565 nm, L band from -30 dBm ~ 0 dBm, C band = -10 dBm, pump1 = 51.2 mW, pump2 = 101.2 mW, edf1 = 50 m, edf2 = 50 m, TLS: tunable laser source………………………………………………………50 Figure 3.19(b): I adjust TLS to observe the change of gain. L band: 1570 nm ~ 1610 nm, C band: 1565 nm, L band from -30 dBm ~ 0 dBm, C band = -10 dBm, pump1 = 51.2 mW, pump2 = 101.2 mW, edf1 = 50 m, edf2 = 50 m, TLS: tunable laser source……............................................................................51 Figure 3.20(a): I adjust TLS to observe the change of NF. L band: 1570 nm ~ 1610 nm, C band: 1565 nm, L band from -30 dBm ~ 0 dBm, C band = -10 dBm, pump1 = 40 mW, pump2 = 60 mW, edf1 = 50 m, edf2 = 50 m, TLS: tunable laser source………………………………………………………51 Figure 3.20 (b): I adjust TLS to observe the change of gain. L band: 1570 nm ~ 1610 nm, C band: 1565 nm, L band from -30 dBm ~ 0 dBm, C band = -10 dBm, pump1 = 40 mW, pump2 = 60 mW, edf1 = 50 m, edf2 = 50 m, TLS: tunable laser source………………………………………………………52 Figure 3.21(a): I adjust TLS to observe the change of NF. L band: 1570 nm ~ 1610 nm, C band: 1565 nm, L band from -30 dBm ~ 0 dBm, C band = -10 dBm, pump1 = 51.2 mW, pump2 = 101.2 mW, edf1 = 25 m, edf2 = 25 m, TLS: tunable laser source………………………………………………………52 Figure 3.21(b): I adjust TLS to observe the change of gain. L band: 1570 nm ~ 1610 nm, C band: 1565 nm, L band from -30 dBm ~ 0 dBm, C band = -10 dBm, pump1 = 51.2 mW, pump2 = 101.2 mW, edf1 = 25 m, edf2 = 25 m, TLS: tunable laser source………………………………………………………53 Figure 3.22(a): I adjust TLS to observe the change of NF. L band: 1570 nm ~ 1610 nm, pump1 = 40 mW, C band: 1565 nm, pump2 = 60 mW, L band from -30 dBm ~ 0 dBm, edf1 = 25 m, C band = -10 dBm, edf2 = 25 m, TLS: tunable laser source………………………………………………………53 Figure 3.22(b): I adjust TLS to observe the change of gain. L band: 1570 nm ~ 1610 nm, pump1 = 40 mW, C band: 1565 nm, pump2 = 60 mW, L band from -30 dBm ~ 0 dBm, edf1 = 25 m, C band = -10 dBm, edf2 = 25 m, TLS: tunable laser source………………………………………………………54 Figure 3.23(a): Adjust power of TLS, power of pump laser, length of EDF to optimize NF………………………………………………………………………..54 Figure 3.23(b): Adjust power of TLS, power of pump laser, length of EDF to optimize gain……………………………………………………………………….55 Figure 3.24(a): Adjust power of pump laser, length of EDF to optimize NF………........56 Figure 3.24(b): Adjust power of pump laser, length of EDF to optimize gain…………..56 Figure 3.25(a): The NF results of optimized power of pump laser and length of EDF….57 Figure 3.25(b): The gain results of optimized power of pump laser and length of EDF...57 Figure 3.26(a): NF as a function of EDF length. Comparison of the EDF length with 30/50 m and 30/30 m, and 100 mW total pump power fixed, with 40 mW and 60 mW in the 1st and 2nd stage, respectively………………………...58 Figure 3.26(b): Gain as a function of EDF length. Comparison of the EDF length with 30/50 m and 30/30 m, and 100 mW total pump power fixed, with 40 mW and 60 mW in the 1st and 2nd stage, respectively………………………...58 Figure 4.1(a): The experimental structure of forward pump two-stage………………….59 Figure 4.1(b): Experimental instruments and components………………………………60 Figure 4.2: The characteristic curves of Nortel pump laser and Lasertron pump laser….61 Figure 4.3(a): The structure of reflector measurement. TLS: tunable laser source, PM: powermeter, (up): power loss from TLS to PM, (down): mirror loss from TLS to PM…………………………………………………………………62 Figure 4.3(b): The characteristic curve of mirror from 1510 nm to 1570 nm. Ptun: the power of tunable laser source, Ppowermeter: the power of power meter measurement, Pmirror: the power of TLS to PM through mirror……………62 Figure 4.3(c): The characteristic curve of mirror from 1570 nm to 1620 nm. Ptun: the power of tunable laser source, Ppowermeter: the power of power meter measurement, Pmirror: the power of TLS to PM through mirror……………63 Figure 4.3(d): The characteristic curve of mirror from 1510 nm to 1620 nm. The insertion loss of the mirror is calculated by subtracting Ppowermeter from Pmirror……...63 Figure 4.4: The spectrum of injected 1565 nm signal…………………………………...64 Figure 4.5: The spectrum of injected 1550 nm signal…………………………………...65 Figure 4.6: The spectrum of high pump power or current……………………………….65 Figure 4.7(a): Experimental result compared with simulated result. Pp1=48.62mW, Pp2=65mW…………………………………………………………………..66 Figure 4.7(b): Experimental result compared with simulated result. Pp1=42mW, Pp2=115.2mW……………………………………………………………….67 Figure 4.8(a): NF of L-band EDFA with different input signal powers…………………70 Figure 4.8(b): Gain of L-band EDFA with different input signal powers………………..70 Figure 4.9(a): NF of L-band EDFA with different pump powers………………………..72 Figure 4.9(b): NF of L-band EDFA with different pump powers………………………..72 Figure 4.10(a): NF of L-band EDFA with different resolutions…………………………74 Figure 4.10(b): Gain of L-band EDFA with different resolutions……………………….74 Figure 4.11: The spectrum of L-band EDFA with -30 dBm signal input and 103 mW total pump power, with 42 mW and 61 mW in the 1st and 2nd stage, respectively. NF is about 5.22 dB………………………………………………………..75 Figure 4.12 (a): NF as a function of input signal power…………………………………77 Figure 4.12(b): Gain as a function of input signal power………………………………..77 Figure 4.13(a): NF as a function of input signal wavelength with signal probe at -30 dBm………………………………………………………………………...78 Figure 4.13(b): Gain as a function of input signal wavelength with signal probe at -30 dBm………………………………………………………………………...78

    Reference

    [1] P. C. Becker, N. A. Olsson, J. R. Simpson, “Erbium-Doped Fiber Amplifier: Fundamentals and Technology,” Academic Press, 1997.

    [2] Ahmet Altuncu and Arif Bas¸gümüs, “Gain enhancement in L-band loop EDFA through C-band signal injection”, IEEE Photon. Technol. Lett., vol. 17, no. 7, pp. 1402-1404, Jul. 2005.

    [3] S. W. Harun, N. Tamchek, P. Poopalan, and H. Ahmad, “Double-pass L-band EDFA with enhanced noise figure characteristics”, IEEE Photon. Technol. Lett., vol. 15, no. 8, pp. 1055-1057, Aug. 2003.

    [4] Y. Zhang, X. Liu, and J. Peng, “L-band EDFA gain enhancement and dynamic working range enlarging by C-band laser injection,” in APOC 2001, pp. 4581-30.

    [5] Y. Zhang, X. Liu, J. Peng, X. Feng, and W. Zhang, “Wavelength and power dependence of injected C-band laser on pump conversion efficiency of L-band EDFA,” IEEE Photon. Technol. Lett., vol. 14, no. 3, pp. 290-292, Mar. 2002.

    [6] M. A. Mahdi and H. Ahmad, “Gain enhanced L-band Er doped fiber amplifier utilizing unwanted backward ASE,” IEEE Photon. Technol. Lett., vol. 13, no. 10, pp. 1067–1069, Oct. 2001.

    [7] S. W. Harun, N. Tamchek, P. Poopalan, and H. Ahmad, “Gain clamping in two-stage L-band EDFA using a broad-band FBG,” IEEE Photon. Technol. Lett., vol. 16, no. 2, pp. 422–424, Feb. 2004.

    [8] F. R. M. Adikan, A. S. M. Noor, and M. A. Mahdi, “Optimum pumping configuration for L-band EDFA incorporating ASE pump source,” IEEE Photon. Technol. Lett., vol. 16, no. 6, pp. 1465–1467, Jun. 2004.

    [9] L. L. Yi, L. Zhan, J. H. Ji, Q. H. Ye, and Y. X. Xia, “Improvement of gain and noise figure in double-pass L-band EDFA by incorporating a fiber bragg grating,” IEEE Photon. Technol. Lett., vol. 16, no. 4, pp. 1005–1007, Apr. 2004.

    [10] B. H. Choi, H. H. Park, M. Chu, and S. K. Kim, “High-gain coefficient long-wavelength-band erbium-doped fiber amplifier using 1530-nm band pump,” IEEE Photon. Technol. Lett., vol. 13, no. 2, pp. 109–111, Feb. 2001.

    [11] E. Desurvire, J. Wiley and sons, “Erbium-Doped Fiber Amplifiers: Principles and Applications,” New York, 1994.

    [12] N. Kumar, M. R. Shenoy, and B. P. Pal, “A standard fiber-based loop mirror as a gain-flattening fiber for erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett., vol. 17, no. 10, pp. 2056-2058, Oct. 2005.

    [13] H. Ahmad and S. W. Harun, “Double pass L-band EDFA with an improved gain coefficient” IEEE Photon. Technol. Lett., pp. 31-33, 2003.

    [14] H. Ahmad and S. W. Harun, “Double pass L-band EDFA with flat gain and improved noise figure characteristic,” IEEE Photon. Technol. Lett., pp. 75-77, 2004.

    [15] S. W. Harun P. Poopalan and H. Ahmad, “Gain enhancement in L-band EDFA through a double-pass technique,” IEEE Photon. Technol. Lett., vol. 14, no. 3, pp. 296-297, Mar. 2002.

    [16] H. S. Chung, M. S. Lee, D. Lee, N. Park and D. J. DiGiovanni, “Low noise, high efficiency L-band EDFA with 980nm pumping,” IEEE Electron. Lett., vol. 35, no. 13, pp. 1099-1100, Jun. 1999.

    [17] A. Yeniay and R. Gao, “L-band EDFA gain and gain flatness enhancement via co-propagating C-band seed technique,” ECOC’01, Tu.L.3.1, pp. 224-225.

    [18] S. Yamashita, and M. Nishihara, “L-band erbium-doped fiber amplifier incorporating an inline fiber grating laser,” IEEE J. Quantum Electron., vol. 07, no. 1, pp. 44-48, Jan. 2001.

    [19] K. H. Yla-Jarkko, C. Codemard, J. Singleton, P. W. Turner, I. Godfrey, S. –U. Alam, J. Nilsson, J. K. Sahu, and A. B. Grudinin, “Low-noise intelligent Cladding-pumped L-band EDFA,” IEEE Photon. Lett., vol. 15, no. 7, pp. 909-911, Jul. 2003.

    [20] A. A. Rieznik, W. A. Arellano, G. S. Wiederhecker, T. P. M. Alegre, and H. L. Fragnito, “EDFAs gain and noise figure dependence on the fiber length: Comparison between L and C bands.” IEEE MIT-S IMOC, pp. 115-119, 2003.

    [21] F. Roy, A. Grillet, L. Lolivier, G. Peigne, D. Giannone and D. Hamoir, “Experimental optimization of central wavelength and bandwidth of reflective FBG for efficiency improvement of low-noise L-band EDFAs,” IEEE Electron. Lett., vol. 41, no. 8, Apr. 2005.

    [22] L. Yi, L. Zhan, W. Hu, Q. Tang, and Y. Xia, “Tunable gain-clamped double-pass erbium-doped fiber amplifier,” Optics Express, vol. 14, no. 2, pp. 570-574, Jan. 2006.

    [23] F. A. Flood, and C. C. Wang, “980-nm pump-band wavelengths for long-wavelength-band erbium-doped fiber amplifiers,” IEEE Photon. Lett., vol. 11, no. 10, pp. 1232-1234, Oct. 1999.

    [24] H. Ono, M. Yamada, T. Kanamori, S. Sudo, and Y. Ohishi, “1.58-um band gain-flattened erbium-doped fiber amplifiers for WDM transmission systems,” Journal of Lightwave Technol., vol. 17, no. 3, pp. 490-496, Mar. 1999.

    [25] J. F. Massicott, R. Wyatt, B. J. Ainslie and S. P. Craig-Ryan, “Efficient, high power, high gain, Er3+ doped silica fiber amplifier,” IEEE Electron. Lett., vol. 26, no. 14, pp. 1038-1039, Jul. 1990.

    [26] J. Lee, U. Ryu, S. J. Ahn, and N. Park, “Enhancement of power conversion efficiency for an L-band EDFA with a secondary pumping effect in the unpumped EDF section,” IEEE Photon. Technol. Lett., vol. 11, no. 1, pp. 42-44, Jan. 1999.

    [27] A. Buxens, H. N. Poulsen, A. T. Clausen and P. Jeppesen, “Gain flattened L-band EDFA based on upgraded C-band EDFA using forward ASE pumping in an EDF section,” IEEE Electron. Lett., vol. 36, no. 9, pp. 821-823, Apr. 2000.

    [28] B. Min, H. Yoon, W. J. Lee, and N. Park, “Coupled structure for wide-band EDFA with gain and noise figure improvements from C to L-band ASE injection,” IEEE Photon. Technol. Lett., vol. 12, no. 5, pp. 480-482, May. 2000.
    [29] U. Ryu, K. Oh, W. Shin, and U. C. Paek, “Inherent enhancement of gain flatness and achievement of broad gain bandwidth in erbium-doped silica fiber amplifiers,” IEEE J. Quantum Electron., vol. 38, no. 2, pp. 149-161, Feb. 2002.

    [30] Y. Lu and S. Chi, “Two-stage L-band EDFA applying C/L-band wavelength-division multiplexer with the counterpropagating partial gain-clamping,” IEEE Photon. Technol. Lett., vol. 15, no. 12, pp. 1710-1712, Dec. 2003.

    [31] M. A. Mahdi, F. R. Mahamd Adikan, P. Poopalan, S. Selvakennedy, and H. Ahmad, “High-gain bidirectional Er-doped fiber amplifier for conventional- and long-wavelength bands,” IEEE Photon. Technol. Lett., vol. 12, no. 11, pp. 1468-1470, Nov. 2000.

    [32] M. Yamada, H. Ono, T. kanamori, S. Sudo and Y. Ohishi, “Broadband and gain-flattened amplifier composed of a 1.55 □m-band and 1.58 □m-band Er3+-doped fiber amplifier in a parallel configuration,” Electron. Lett., vol. 33, pp. 710-711, 1997.

    [33] M. Jinno, T. Sakamoto, J. Kani, S. Aisawa, K. Oda, M. Fukui, H. Ono and K. Oguchi, “First demonstration of 1580 nm wavelength band WDM transmission for doubling usable bandwidth and suppressing FWM in DSF,” Electron. Lett., vol. 33, pp. 882-883, 1997.

    [34] S. W. Harun, N. Tamchek, P. Poopalan and H. Ahmad, “High gain L-band erbium-doped fiber amplifier with two-stage double-pass configuration,” Pramana J. Phys., vol. 61, no. 1, pp. 93-97, Jul. 2003.

    [35] S. W. Harun and H. Ahmad, “Demonstration of highly efficient flat-gain L-band EDFA with two-stage double-pass configuration,” Electron. and Com., vol. 2, no. 1, pp. 36-39, Feb. 2004.

    [36] S. W. Harun and H. Ahmad, “Two-stage gain clamped L-band EDFA with the counter propagating ring laser at the second stage,” Electron. and Com., vol. 2, no. 2, pp. 64-66, Aug. 2004.

    [37] S. W. Harun, N. M. Samsuri and H. Ahmad, “Gain-clamping techniques in two-stage double-pass L-band EDFA,” Pramana J. Phys., vol. 66, no. 3, pp. 539-545, Mar. 2006.

    [38] P. F. Wysocki, J. R. Simpson, and D. Lee, “Prediction of Gain Peak Wavelength for Er-Doped Fiber Amplifiers and Amplifier Chains,” IEEE Photon. Technol. Lett., vol. 6, no. 9, pp. 1098-1110, Sep. 1994.

    [39] Y. Sun, J. L. Zyskind, and A. K. Srivastava, “Average Inversion Level, Modeling, and Physics of Erbium-Doped Fiber Amplifiers,” IEEE J. Quantum Electron., vol. 3, no. 4, pp. 991-1007, Aug. 1997.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE