簡易檢索 / 詳目顯示

研究生: 楊固峰
Ku-Feng Yang
論文名稱: 一、聚苯胺衍生物合成方法之比較:氧化共聚合法及同步還原與取代反應法 二、利用同步還原與取代反應合成高導電性自身摻雜態聚苯胺衍生物
指導教授: 韓建中
Chien-Chung Han
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2005
畢業學年度: 94
語文別: 中文
論文頁數: 271
中文關鍵詞: 導電高分子聚苯胺
外文關鍵詞: conducting polymer, polyaniline
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    導電高分子具有獨特的光電性質與半導體特性,成為目前熱門的高分子光電材料。其中聚苯胺具有高導電度且於空氣中有良好的穩定性,加上單體原料便宜合成容易等特色而成為學者研究的焦點之一。然而導電高分子主鏈由單鍵與雙鍵形成連續共軛的結構,雖然擁有高導電度的性質,卻不易溶解於一般有機溶劑而成為實際應用上的一大瓶頸。目前文獻報導是以引進側鏈取代基的方法改善其溶解行為,但卻往往造成導電度大幅下降,文獻解釋認為這是因為取代基立體障礙造成高分子主鏈共平面性變差的影響。利用本實驗室開發之同步還原與取代反應(CRS)方法引進正丁硫烷取代基合成聚苯胺衍生物(Pan-SBu)確實改善於有機溶劑的溶解行為,同時也維持高導電度的行為模式,此方法克服取代基引進後造成導電度下降的缺點,同時證實引進取代基後其立體障礙對高分子主鏈共平面性的影響其實並不大。
    為了進一步瞭解引進取代基影響導電度的本質,我們利用氧化聚合法(OCP)與同步還原與取代反應(CRS)方法合成高溶解度之含正丁硫烷取代基之聚苯胺衍生物,藉由分析比較瞭解影響導電度的真正原因。其中 CRS 方法合成之聚苯胺衍生物與反應前聚苯胺比較,結果顯示其有較低的標準氧化還原電位Eo值與 UV-vis 吸收光譜紅位移的現象。然而 OCP 方法合成之聚苯胺衍生物與聚苯胺比較,卻有較高的標準氧化還原電位 Eo 值與 UV-vis 吸收光譜藍位移的現象。經由 IR、 in-situ UV-vis 與 NMR 量測的結果顯示, CRS 合成之聚苯胺衍生物保有反應前聚苯胺共軛規則的主鏈結構,而有高導電度的行為模式。 OCP 方法合成之聚苯胺衍生物主鏈可能產生共軛缺陷的結構(conjugation defect)縮短有效共軛長度並增加摻雜反應與氧化反應的困難度,而造成導電度下降。實驗結果證實,文獻認為取代基立體障礙影響共平面性而造成導電度下降的說法並不正確,事實上 OCP 方法聚合過程產生共軛缺陷的主鏈結構才是影響導電度的真正原因。
    另外我們以 CRS 方法大量合成含有醯基丙烷磺酸鈉取代基之聚苯胺衍生物 Pan-MPS ,藉由詳細的儀器鑑定探討取代基引進後對 Pan-MPS 性質的影響。另人驚奇的是,利用酸性溶液將 Pan-MPS 取代基末端的磺酸鈉(-SO3Na)酸化成具有自身摻雜功能的磺酸(-SO3H)後,其自身摻雜態的導電度為 0.3 S/cm,比文獻報導相同自身摻雜度的磺酸化聚苯胺(sulfonated polyaniline;SPan)導電度 10-5 S/cm 高了 4 個級數。但是自身摻雜態 Pan-MPS(-SO3H)透過摻雜作用生成許多額外的高分子鏈間分子作用力,如氫鍵及電荷庫侖作用力等,造成其溶解度比未摻雜態 Pan-MPS(-SO3Na)下降許多,因此我們利用 in-situ dedoping 的概念在 NMP 、 DMSO 、 DMF 等溶劑中加入催化劑量的鹼(如NR3),可以即時(in-situ)中和取代基末端的磺酸而恢復其在有機溶劑的溶解能力,提升自身摻雜態 Pan-MPS(-SO3H)溶解應用的可行性。此外也合成具有不同自身摻雜度的 Pan-MPS(-SO3H)及含有不同質子酸(TsOH)摻雜度之聚苯胺,經由比對導電度與 EPR 光譜分析的結果顯示,自身摻雜態 Pan-MPS(-SO3H)因其取代基均勻分佈於主鏈上,所以經摻雜後能較有效的形成連續之三度空間導電網絡,有利於電荷載子 Polaron 在整體材質(bulk)上的傳輸能力,是 Pan-MPS(-SO3H)高導電度的主要原因。也首次以電化學方法控制聚苯胺氧化態,得到穩定性佳的高氧化態聚苯胺薄膜,並利用 CRS 方法引進親核性試劑,成功的開發一個有效率方法可得到高取代量的聚苯胺衍生物 Pan-MPS。
    最後我們將 CRS 方法合成之 Pan-MPS 與其他聚苯胺衍生物做為染料材料實際應用到染料敏化型太陽能電池元件,藉由取代基上特有官能基作為 anchoring group 可提高在二氧化鈦奈米顆粒表面的吸附效果,同時 Pan-MPS 與聚苯胺衍生物有長範圍可見光吸收能力與高莫爾吸收效率的特性,所以可充分利用太陽光能量,而表現出比聚苯胺更好的電池元件效能。


    Abstract
    Polyaniline and other conducting polymers have been demonstrated to be particularly useful in many applications, such as light-emitting diodes, molecular devices, optical switches, smart windows, transistors and rechargeable batteries. Like other unsubstituted conjugated polymers, due to the poor solubility the application of polyaniline is limited in the electronic industry. Improved solution processability can be achieved by attaching various alkyl and alkoxy-substituents to the polymer backbone. However, such substituted polyaniline have always been found to exhibit much lower conductivity (10-1–10-7 S/cm) than unsubstituted polyaniline (1–5 S/cm). In general, the conductivity reduces dramatically as the size of the substituent group becomes larger. This diminishing of conductivity has long been ascribed to the possible steric hindrance effect of the substituent groups.
    New highly solution-processable aniline/butylthioaniline copolymers were prepared via oxidative copolymerization (OCP) and by concurrent reduction and substitution (CRS) route. Butylthio-substituted polyaniline Pan-SBu obtained via the CRS route, displayed a lowered redox potential (E0) and a red-shifted maximum wavelength (λmax; ultraviolet–visible) in comparison with its parent unsubstituted polyaniline. The results were in line with the expected property changes after the addition of an electron donating substituent to the polymer backbone. On the contrary, copolymers obtained via the OCP method displayed higher E0 values and blue-shift in λmax than the unsubstituted Pan. The results suggested that copolymers obtained via the OCP method might have shorter conjugation length than the unsubstituted Pan, possibly attributed to their main chain conjugation defects (e.g., 1,3-linkage structures), as evidenced by IR studies. The results of 1H NMR studies indicated that Pan-SBu showed much higher structural homogeneity than copolymer CP4. Since the CRS synthetic route involved no backbone alteration, the resultant copolymer (Pan-SBu) should have maintained the same backbone structure and hence the high conductivity as same as that of the parent unsubstituted Pan.
    We synthesized polyaniline derivative Pan-MPS in large scale, in which the substituent contains self-doping ability via CRS route. By detailed analyses, the reproducible and reliable experimental results were successfully obtained for Pan-MPS. Surprisingly, the conductivity of self-doped Pan-MPS exhibited a 4 order increase than the SPan reported on literature. Based on the in-situ dedoping concept, self-doping Pan-MPS was found to be highly soluble in NMP, DMF and DMSO together with a catalytic amount of base (NR3). By comparing the different self-doping degree of Pan-MPS and different TsOH doping degree of polyaniline, it could be concluded that the homogeneous distribution of self-doping substituent on the Pan-MPS backbone might be the reason for such a high conductivity than the unsubstituted polyaniline and SPan at the same doping degree. Moreover, we have developed an efficient route to synthesize Pan-MPS with a high substitution degree, by the reaction of a nucleophilic substituent to a stable high oxidation state polyaniline prepared from electrochemical method via CRS route.
    In the last chapter, we synthesized various types of conductive and processable functionalized polyanilines via the novel concurrent reduction and substitution (CRS) method and we explored their potentials as dye materials for the dye-sensitized solar cell devices.

    本文目錄 第一章 文獻回顧 1 1-1 前言 2 1-2 導電高分子簡介 3 1-2-1 導電高分子 3 1-2-2 導電高分子的摻雜反應 5 1-3 導電高分子聚苯胺簡介 9 1-4 聚苯胺的合成 11 1-4-1 電化學方法合成聚苯胺 11 1-4-2 化學方法合成聚苯胺 11 1-4-3 聚苯胺聚合機構 12 1-5 聚苯胺摻雜反應與導電度的研究 14 1-5-1 完全摻雜態聚苯胺 14 1-5-2 自身摻雜態聚苯胺 15 1-5-3 二次摻雜態聚苯胺 16 1-6 聚苯胺的性質鑑定 17 1-6-1 UV-vis 光譜研究 17 1-6-2 XPS 光譜研究 19 1-6-3 IR 光譜研究 21 1-7 聚苯胺衍生物的研究 22 1-7-1 苯環上含有取代基之聚苯胺衍生物 22 1-7-2 氮上烷基取代之聚苯胺衍生物 23 1-7-3 聚苯胺共聚合物(aniline copolymers) 24 1-7-4 苯環上含有自身摻雜取代基之聚苯胺衍生物 25 1-7-5 氮上含有自身摻雜取代基之聚苯胺衍生物 25 1-7-6 單體共聚合得到自身摻雜取代基之聚苯胺衍生物 26 1-8 研究動機 29 1-9 參考文獻 31 第二章 實驗內容 35 2-1 藥品 36 2-2 聚苯胺的合成 37 2-2-1 電化學方法(Electrochemical polymerization method) 37 2-2-2 化學氧化法(Oxidative polymerization method) 38 2-3 傳統氧化聚合法合成聚苯胺衍生物 40 2-3-1 (1:1)正丁硫烷取代之聚苯胺衍生物 40 2-3-2 (2:1)正丁硫烷取代之聚苯胺衍生物 41 2-3-3 (4:1)正丁硫烷取代之聚苯胺衍生物 41 2-3-4 (8:1)正丁硫烷取代之聚苯胺衍生物 42 2-3-5 (1:1)正辛硫烷取代之聚苯胺衍生物 42 2-3-6 (1:1)正十二硫烷取代之聚苯胺衍生物 42 2-4 控制聚苯胺及其衍生物的氧化還原狀態 43 2-4-1 聚苯胺的還原 43 2-4-2 聚苯胺及其衍生物的氧化反應 43 2-4-3 水溶液電解質系統控制聚苯胺及其衍生物的氧化態 44 2-4-4 非水溶液電解質系統控制聚苯胺於高氧化態 45 2-5 利用同步還原與取代反應(CRS)合成聚苯胺衍生物 46 2-5-1 合成正丁硫烷取代之聚苯胺衍生物 Pan-SBu 46 2-5-2 合成醯基丙烷磺酸鈉取代之聚苯胺衍生物 Pan-MPS 47 2-5-3 合成 25 mol% 取代量的 Pan-MPS 固態薄膜 48 2-5-4 合成高取代量 Pan-MPS 固態薄膜 49 2-6 聚苯胺及其衍生物的摻雜反應 50 2-6-1 完全摻雜態聚苯胺及其衍生物的製備 50 2-6-2 自身摻雜態 Pan-MPS 的製備 50 2-7 儀器量測與樣品製備 52 2-7-1 電化學儀器 52 2-7-2 傅立葉轉換紅外線光譜儀(FTIR) 52 2-7-3 紫外光-可見光-光譜儀 (UV-vis) 53 2-7-4 電子能譜儀 ( X-ray Photoelectron Spectroscopy;XPS) 54 2-7-5 導電儀 ( Conductivity Measurement Equipment ) 55 2-7-6 核磁共振光譜(NMR) 57 2-7-7 凝膠滲透層析術(Gel permeation chromatograph;GPC) 58 2-7-8 電子自旋共振光譜儀(Electron Spin Resonance) 59 2-7-9 染料敏化型太陽能電池光電化學測試 61 第三章 聚苯胺衍生物合成方法之比較:氧化共聚合法及同步還原與取代反應法 63 3-1 簡介 64 3-2-1 材料合成 68 3-2-2 儀器鑑定 68 3-3 結果與討論 70 3-3-1 產率與元素分析結果討論 70 3-3-2 GPC 分子量分佈結果與討論 72 3-3-3 溶解度測試結果與討論 74 3-3-4 XPS 結果與討論 75 3-3-5 Conductivity 結果與討論 82 3-3-6 影響正丁硫烷取代之聚苯胺共聚合物導電度可能的原因 85 3-3-7 CV 量測結果與討論 88 3-3-8 NMR 量測結果與討論 90 3-3-9 UV-vis 結果與討論 99 3-3-10 IR 結果與討論 112 3-3-11 EPR 結果與討論 120 3-4 結論 129 3-5 參考文獻 133 第四章 醯基丙烷磺酸鈉取代之高導電度自身摻雜態聚苯胺衍生物 136 4-1 前言 137 4-2 實驗部分 141 4-2-1 材料合成 141 4-2-2 儀器部分 141 4-3 結果與討論 143 4-3-1 UV-vis吸收光譜監看CRS反應進行 143 4-3-2 IR 結果與討論 146 4-3-3 XPS 結果與討論 147 4-3-4 UV-vis 結果與討論 151 4-3-5 GPC 量測結果與討論 156 4-3-6 導電度量測結果與分析討論 158 4-3-7 自身摻雜 Pan-MPS 結果與討論 160 4-3-8 溶解度量測結果與討論 165 4-3-9 不同取代量 Pan-MPS 結果與討論 170 4-3-10 二次取代 Pan-MPSx2 結果與討論 186 4-4 結論 192 4-5 參考文獻 194 第五章 電化學方法得到高氧化態聚苯胺並以 CRS 方法引進醯基丙烷磺酸鈉 197 5-1 簡介 198 5-2 實驗部分 201 5-2-1 材料合成 201 5-2-2 儀器鑑定 201 5-3 結果討論 202 5-3-1 水溶液電解質系統結果與討論 202 5-3-2 非水溶液電解質系統結果與討論 207 5-3-3 高取代量 Pan-MPS 的合成 210 5-3-4 高取代量 Pan-MPS 的 IR 結果與討論 215 5-3-5 高取代量 Pan-MPS 的 CV 結果與討論 218 5-3-6 高取代量 Pan-MPS 的 UV 結果與討論 219 5-4 結論 223 5-5 參考文獻 224 第六章 合成新功能性聚苯胺做為染料敏化型太陽能電池之材料 226 6-1 簡介 227 6-2 實驗部分 235 6-2-1 儀器鑑定 235 6-2-2 元件量測 235 6-3 苯胺寡聚合物 Octamer 的莫爾吸收效率 237 6-3-1 材料合成 237 6-3-2 鑑定結果與討論 238 6-4 Pan-MEA做為染料材料 241 6-4-1 材料合成 241 6-4-2 鑑定結果與討論 242 6-4-3 元件量測結果與討論 247 6-5 Pan-MPS 做為染料 251 6-5-1 材料合成 251 6-5-2 鑑定結果與討論 251 6-5-3 元件量測結果與討論 255 6-6 不同取代量 Pan-MPS 做為染料材料 258 6-6-1 材料合成 258 6-6-2 元件量測結果與討論 258 6-7 結論 261 6-8 參考文獻 263

    參考文獻
    第一章
    1. Natta, G.; Mazzanti, G.; Corradini, P. Atti Accad. Naz. Lince Rend. Cl. Sci. Fis. Mat. Natur. 1958, 25, 3.
    2. (a) Shirakawa, H.; Ikeda, S. Polym. J. 1971, 2, 231. (b) Ito, T.; Shirakawa, H.; Ikeda, S.; J. Polym. Sci. Polym. Chem. Ed. 1974, 12, 10.
    3. (a) Shirakawa,H.; Louis, E. J.; MacDiarmid, A. G.; Chiang, C. K.; Heeger, A. J. J. Chem. Soc., Chem. Commun. 1977, 578. (b) Chiang, C. K.; Fincher, C. R.; Rark, Y. W.; Heeer, A. J.; Shirakawa, H.; Louis, E. J.; Gau, S. C.; MacDiarmid, A. G. Phys. Rev. Lett. 1977, 39, 1098.
    4. Handbook of chemistry and physics P. David Ed.; The Chemical Rubber Company. 1991.
    5. Diaz, A. F.; Kanazdwd, K. K. in “Extended Linear Chain Compo- unds”(G. S. Miller, ed.), Plenum, New York, 1982, p3.
    6. Baughman, R. M.; Bredas, J. L.; Elsenbaumer, R. L.; Shacklette, L. W. Chem. Rev. 1982, 82, 209.
    7. Kaneto, K.; Ura, S.; Yoshino, K.; Inuishi, Y. Jap. J. of App. Phys. 1984, 23, 189.
    8. MacDiarmid, A. G.; Chiang, J. C.; Halpern, M.; Huang, W. S.; Mu, S. L.; Somasir, N. L. D. Mol, Cryst. Liq. Cryst., 1985, 121, 173
    9. Heeger, A. L. Angew. Chem. 2001, 40, 2591
    10. Nigrey, P. J.; MacDiarmid, A. G.; Heeger, A. J.; J. Chem. Soc. Chem. Commun. 1979, 594
    11. Letheby, H. J. Chem. Soc. 1862, 15, 161.
    12. Mohilner, D. M.; Adams, R. N.; Argersinger, W. J. J. Am. Chem. Soc. 1962, 84, 3618.
    13. Watanabe, A. K.; Mori, K.; Iwasaki, Y.; Nakamura, Y. Macromolecules 1987, 20, 1793.
    14. Huang, W. S.; Humphrey, B. D.; MacDiarmid, A. G., J. Chem. Soc. Farady. Trans., 1986, 82, 2385.
    15. (a) Macdiarmid, A. G.; Epstein, A. J. Faraday Discuss Chem. Soc. 1989, 88, 317. (b) Focke, W. W.; Wenk, G. E.; Wei, Y. J. Phys. Chem. 1987, 91, 5813. (c) Macdiarmid, A. G.; Chiang, J. C.; Richter, A. F.; Somasiri, N. L. D.; Epstein, A. J. “Polyaniline : Sythesis and Characterization of the Emeraline Oxidation State by Elemental Analysis” in L. Alca’cer(ed). “Conducting Polymer” D. Reidel Pub. Comp. Dordrecht, Holland 1987, 105. (d) Travers,;J. P.; Chroboczek, J. ; Devreux, J.; Genoud, F. ; Nechtschein, M.; Syed, A.; Genies, E. M.; Tsintavis, C. Mol. Cryst. Liq. Cryst. 1985, 121, 195.
    16. Adams, P. N.; Monkman, A. P. Synth. Met. 1997, 87, 165.
    17. (a)Genies, E. M.; Syed, A. A.; Jsintavis, C. Mol. Cryst. Liq. Cryst. 1985, 121, 181. (b) Genies, E. M.; Jsintavis, C. Electroanal. Chem. 1985, 195, 109.
    18. Chiang, J. C.; MacDiarmid A. G. Synth. Met. 1986, 13, 193.
    19. (a)Han, C. C.; Elsenbaumer R. L. “New, Novel, and Generally Applicable Dopants for Conducting Polymers.” at the 1988 ICSM, Santa Fe, NM, USA. (b) Han, C. C.; Elsenbaumer, R. L. Synth. Met. 1989, 30, 123.
    20. Salaneck, W. R.; Lundstrom, I.; Haung, W. S.; MacDiarmid, A. G. Synth. Met. 1986, 13, 291.
    21. Patial, A. O.; Ikenoue, Y.; Wudl, F.; Heeger, A. J. J. Am. Chem. Soc. 1987, 109, 1858.
    22. Yue, J.; Epstein, A. J. J. Am. Chem. Soc. 1990, 112, 2800
    23. Yue, J.; Wang, Z. H.; Cromack, K. R.; Epstein, A. J.; MacDiarmid, A. G. J. Am. Chem. Soc. 1991, 113, 2665.
    24. MacDiarmid, A. G.; Epstein, A. J. Synth. Met. 1994, 65, 103.
    25. Albuquerque, J. E.; Mattoso, L. H. C.; Balogh, D. T.; Faria, R. M.; Masters, J. G.; MacDiarmid, A. G. Synth. Met. 2000, 113, 19.
    26. Lu, F. L.; Wudl, F.; Nowak, M.; Heeger, A. J. J. Am. Chem.Soc. 1986, 108, 8311.
    27. Stafstrom, S.; Bredas, J. L.; Epstein, A. J.; Woo, H. S.; Tanner, D. B.; Huang, W. S.; MacDiramid, A. G. Phys. Rev. Lett. 1987, 59, 1464.
    28. Sun, Y.; Macdiarmid, A. G.; Epstein, A. J. J. Chem. Soc. Chem. Common. 1990, 529.
    29. Cao, Y.; Smith, P.; Heeger, A. J. Synth. Met. 1989, 32, 263.
    30. Tang, J.; Jing, X.; Wang, B.; Wang, F. Synth. Met. 1988, 24, 231.
    31. Salaneck, W. R.; Lundstorm, T.; Hjertberg, T.; Duke, C. B.; Conwell, E.; Paton, A.; MacDiarmid, A. G., Somasiri, N. C. D.; Huang, W. S.; Richter, A. F. Synth. Met. 1987, 18, 291.
    32. (a).Kang, E. T.; Neoh, K. G.; Khor, S. H.; Tan, K. L.; Tan, B. T. J. Chem. Soc., Chem. Commun. 1989, 695. (b) Tan, K. L.; Tan, B. T. G.; Kang, E. T.; Neoh, K. G. Physical Review B 1989, 39, 8070.
    33. Watanabe, A.; Mori, K.; Mikuni, M.; Nakamura, Y.; Matsnda, M. Macromolecules 1989, 22, 3323.
    34. .NaKajima, T.; Harada, M.; Osawa, R.; Kawaqoe, T.; Furukawa, Y.; Harada, I. Macromolecules 1989, 22, 2644.
    35. Monkman, A. P.; Stevens, G. C.; Bloor, D. J. Phys. D : Appl. Phys. 1991, 24, 738
    36. X.-L. Wei, X. L.; Fahlman, M. and Epstein, A. J. Macromolecules 1999, 32, 3114
    37. Yue, J.; Epstein, A. J. Macromolecules 1991, 24, 4441.
    38. Kang, E. T.; Neoh, K. G.; Woo, Y. L.; Tan, K. L. Polym. Commun. 1991, 32, 412
    39. Wang, L.; Jing, X.; Wamg, F. Synth. Met. 1991, 41-43, 685.
    40. Wei, Y.; Focke, W. W.; Wnek, G. E.; Ray, A.; MacDiarmid, A. G. J. Phys. Chem. 1989, 93, 495.
    41. Leclerc, M.; Guay, J.; Dao, L. H. Macromolecules 1989, 22, 649.
    42. D’Aprano, G.; Leclerc, M.; Zotti, G.; Schiavon, G. Chem. Mater. 1995, 7, 33
    43. Chevalier, J.-W.; Bergeron, J.-Y.; Dao, L. H. Macromolecules 1992, 25, 3325
    44. (a)Pandey, S. S.; Annapoorni, S.; Malhotra, B. D. Macromolecules 1993, 26, 3190. (b) Prevost, V.; Petit, A.; Pla, F. Synth. Met. 1999, 104, 79.(c) Conklin, J. A.; Huang, S. C.; Huang, S. M.; Wen, T.; Kaner, R. B. Macromolecules 1995, 28, 6522.
    45. Yue, J.; Epstein, A. J. J. Am. Chem. Soc. 1990, 112, 2800.
    46. Yue, J.; Wang, Z. H.; Cromack, K. R.; Epstein, A. J.; MacDiarmid, A. G. J. Am. Chem. Soc. 1991, 113, 2665.
    47. Wei, X. L.; Wang, Y. Z.; Long, S. M.; Bobeczko, C.; Epstein, A. J. J. Am. Chem. Soc. 1996, 118, 2545.
    48. Chen, S. A.; Hwang, G. W. Macromolecules 1996, 29, 3950.
    49. Chen, S. A.; Hwang, G. W. J. Am. Chem. Soc. 1994, 116, 7939.
    50. Hua, M. Y.; Su, N. Y.; Chen, S. A. Polymer 2000, 41, 813.
    51. DeArmitt, C.; Armes, S. P. ; Winter, J.; Uribe, F. A.; Gottesfeld, S.; Mombourquette, C. Polymer 1993, 34, 158.
    52. Ng, S. C.; Chan, H. S. O.; Huang, H. H.; Ho, P. K. H. J. Chem. Soc. Chem. Commun. 1995, 1327.
    53. Shimizu, S.; Saitoh, T.; Uzawa, M.; Yuasa, M.; Yano, K.; Maruyama, T.; Watanabe, K. Synth. Met. 1997, 85, 1337.
    54. Chan, H. S. O.; Neuendorf, A. J.; Ng, S. C.; Wong, P. M. L.; Young, D. J. Chem. Commun. 1998, 1327.
    55. Prevost, V.; Petit, A.; Pla, F. Synth. Met. 1999, 104, 79.
    第三章
    1. Wei, Y.; Focke, W. W.; Wnek, G. E.; Ray, A.; Mac-Diarmid, A. G. J Phys Chem 1989, 93, 495.
    2. Conklin, J. A.; Huang, S. C.; Huang, S. M.; Wen, T.;Kaner, R. B. Macromolecules 1995, 28, 6522.
    3. Bidan, G.; Genies, E. M.; Penneau, J. F. J Electroanal Chem 1989, 271, 59.
    4. Bodalia, R.; Stern, R.; Batich, C.; Duran, R. J Polym Sci Part A: Polym Chem 1993, 31, 2123.
    5. Genies, E. M.; Noel, P. J Electroanal Chem 1991, 310, 89.
    6. Chevalier, J.-W.; Bergeron, J.-Y.; Dao, L. H. Macromolecules 1992, 25, 3325.
    7. Cattarin, S.; Doubova, L.; Mengoli, G.; Zotti, G. Electrochim Acta 1988, 33, 1077.
    8. Leclerc, M.; Guay, J.; Dao, L. H. Macromolecules 1989, 22, 649.
    9. Shenlong, W.; Fosong, W.; Xiaohui, G. Synth Met 1986, 16, 99.
    10. (a) Wei, Y.; Focke, W. W.; Wnek, G. E.; Ray, A.; MacDiarmid, A. G. J. Phys. Chem. 1989, 93, 495. (b) Conklin, J. A.; Huang, S. C.; Huang, S. M.; Wen, T.; Kaner, R. B. Macromolecules 1995, 28, 6522. (c) Bidan, G.; Genies, E. M.; Penneau, J. F. J. Electroanal. Chem. 1989, 271, 59. (d) Bodalia, R.; Stern, R.; Batich, C.; Duran, R. J. Polym. Sci., Polym. Chem. 1993, 31, 2123. (e) Genies, E. M.; Noel, P. J. Electroanal. Chem. 1991, 310, 89. (f) Chevalier, J.-W.; Bergeron, J.-Y.; Dao, L. H. Macromolecules 1992, 25, 3325. (g) Cattarin, S.; Doubova, L.; Mengoli, G.; Zotti, G. Electrochim. Acta 1988, 33, 1077. (h) Leclerc, M.; Guay, J.; Dao, L. H. Macromolecules 1989, 22, 649. (i) Shenlong, W.; Fosong, W.; Xiaohui, G. Synth. Met. 1986, 16, 99.
    11. (a) D’Aprano, G.; Leclerc, M.; Zotti, G.; Schiavon, G. Chem. Mater. 1995, 7, 33. (b) Mattoso, L. H. C.; MacDiarmid, A. G.; Epstein, A. J. Synth. Met. 1994, 68, 1. (c) Dhawan, S. K.; Trivedi, D. C. Synth. Met. 1993, 60, 67. (d) MacInnis, D., Jr.; Funt, B. L. Synth. Met. 1988, 25, 235. (e) Gupta, M. C.; Umare, S. S. Macromolecules 1992, 25, 138. (f) Lacroix, J. C.; Garcia, P.; Audiere, J. P.; Clement, R.; Kahn, O. Synth. Met. 1991, 44, 117.
    12. (a) Wei, Y.; Hariharan, R.; Patel, S. Macromolecules 1990, 23, 758. (b) Dhawan, S. K.; Trivedi, D. C. Synth. Met. 1993, 60, 63. (c) Langer, J. J. Synth. Met. 1990, 35, 295. (d) Langer, J. J. Synth. Met. 1990, 35, 301. (e) Bergeron, J.-Y.; Dao, L. H. Macromolecules 1992, 25, 3332.
    13. Han, C. C.; Jeng, R. C. Chem Commun 1997, 553.
    14. Han, C. C.; Hseih, W. D.; Yeh, J. Y.; Hong, S. P.Chem Mater 1999, 11, 480.
    15. Han, C. C.; Hong, S. P.; Yang, K. F.; Bai, M. Y.; Lu,C. H.; Huang, C. S. Macromolecules 2001, 34, 587
    16. Han, C. C ; Yang, K.F.; Hong, S.P.; Balasubramanlan, B.; Lee, Y.T.; J Polym Sci Part A: Polym Chem 2005, 43, 1767.
    17. Wei, Y.; Hariharan, R.; Patel, S. A. Macromolecules 1990, 23, 758
    18. Prevost, V.; Petit, A.; Pla, F.; Synth. Met. 1999, 104, 79.
    19. (a) Beamson, G.; Briggs, D. High-Resolution XPS of Organic Polymers; John Wiley & Sons: New York, 1992. (b) Handbook of X-ray Photoelectron Spectroscopy; Chastain, J., Ed.; Perkin- Elmer Corp.: Eden Prairie, MN, and the references therein.
    20. D’Aprano, G.; Leclerc, M.; Zotti, G. J. Electroanal. Chem. 1993, 351, 145.
    21. D’Aprano, G.; Leclerc, M.; Zotti, G.; Schiavon, G. Chem. Mater. 1995, 7, 33.
    22. Yamamoto, T.; Moon, D. K. Makromol. Chem. 1993, 14, 495
    23. Zhang,W.J.;Feng,J.;MacDiarmid,A.G.;Epstein,A.J. Synth Met 1997,84,119-120
    24. unpublished data
    25. Inoue, M.; Navarro, R. E.; Inoue, M. B. Synth. Met. 1989, 30, 199.
    26. MacDiarmid, A. G.; Epstein, A. J. Synth. Met. 1994, 65, 103.
    27. Tang, J.; Jing, X.; Wang, B.; Wang, F. Synth. Met. 1988,24, 231.
    28. Furukawa, Y.; Ueda, F.; Hyodo, Y.; Harada, I.;Nakajima, T.; Kawagoe, T. Macromolecules 1988, 21, 1297.
    29. Sariciftci, N. S.; Kuzmany, H.; Neugebauer, H.; Neckel, A. J. Chem. Phys. 1990, 92, 4530.
    30. Wudl, F.; Angus, R. O., Jr.; Allemand, P. M.; Vachon, D. J.; Norwak, M.; Liu, Z. X.; Heeger, A. J. J. Am. Chem. Soc. 1987, 109, 3677.
    31. Heeger, A. J.; Cao, Y. Synth. Met., 1992, 52, 193
    32. (a) Wang, Z. H.; Epstein, A. J.; MacDiarmid, A. G. Mol. Cryst. Liq. Cryst. 1990, 189, 263. (b) Wang, Z. H.; Javadi, H. H. S.; Ray, A.; MacDiarmid, A. G.; Epstein, A. J. Phys. Rev. B 1990, 42, 5411. (c) Wang, Z. H.; Ray, A.; MacDiarmid, A. G.; Epstein, A. J. Phys. Rev. B, 1991, 43, 4373. (d) Wang, Z. H.; Epstein, A. J.; MacDiarmid, A. G.; Ray, A. Synth. Met., 1991, 41-43, 749.

    第四章
    1. Patial, A. O.; Ikenoue, Y.; Wudl, F.; Heeger, A. J. J. Am. Chem. Soc. 1987, 109, 1858.
    2. Yue, J.; Epstein, A. J. J. Am. Chem. Soc. 1990, 112, 2800
    3. Yue, J.; Wang, Z. H.; Cromack, K. R.; Epstein, A. J.; MacDiarmid, A. G. J. Am. Chem. Soc. 1991, 113, 2665.
    4. (a) Wang, X. H.; Li, J.; Wang, L. X.; Jing, X. B.; Wang, F. S. Synth. Met. 1995, 69, 147. (b) Chen, S. A.; Hwang, G. W. Macromolecules 1996, 29, 3950. (c) Jue, Y.; Epstein, A. J.; Zhong, Z.; Gallagher, P. K.; MacDiarmid, A. G. Synth. Met. 1991, 41, 765.
    5. (a) Chen, S. A.; Hwang, G. W. J. Am. Chem. Soc. 1994, 116, 7939. (b) Hua, M. Y.; Su, N. Y.; Chen, S. A. Polymer 2000, 41, 813. (c) DeArmitt, C.; Armes, S. P. ; Winter, J.; Uribe, F. A.; Gottesfeld, S.; Mombourquette, C. Polymer 1993, 34, 158. (d) Ng, S. C.; Chan, H. S. O.; Huang, H. H.; Ho, P. K. H. J. Chem. Soc. Chem. Commun. 1995, 1327. (e) Shimizu, S.; Saitoh, T.; Uzawa, M.; Yuasa, M.; Yano, K.; Maruyama, T.; Watanabe, K. Synth. Met. 1997, 85, 1337. (f) Chan, H. S. O.; Neuendorf, A. J.; Ng, S. C.; Wong, P. M. L.; Young, D. J. Chem. Commun. 1998, 1327.
    6. Han, C. C.; Lu, C. H.; Hong, S. P.; Yang, K. F. Macromolecules 2003, 36, 7908.
    7. Tang, J.; Jing, X.; Wang, B.; Wang, F. Synth. Met. 1988,24, 231.
    8. Furukawa, Y.; Ueda, F.; Hyodo, Y.; Harada, I.;Nakajima, T.; Kawagoe, T. Macromolecules 1988, 21, 1297.
    9. Sariciftci, N. S.; Kuzmany, H.; Neugebauer, H.; Neckel, A. J. Chem. Phys. 1990, 92, 4530.
    10. Wudl, F.; Angus, R. O., Jr.; Allemand, P. M.; Vachon, D. J.; Norwak, M.; Liu, Z. X.; Heeger, A. J. J. Am. Chem. Soc. 1987, 109, 3677.
    11. (a) Beamson, G.; Briggs, D. High-Resolution XPS of Organic Polymers; John Wiley & Sons: New York, 1992. (b) Handbook of X-ray Photoelectron Spectroscopy; Chastain, J., Ed.; Perkin- Elmer Corp.: Eden Prairie, MN, and the references therein.
    12. D’Aprano, G.; Leclerc, M.; Zotti, G.; Schiavon, G. Chem. Mater. 1995, 7, 33.
    13. Chen, S.A. ; Hwang, G.W. J. Am. Chem. SOC. 1995,117, 10055
    14. Inoue, M.; Navarro, R. E.; Inoue, M. B. Synth. Met. 1989, 30, 199.
    15. Han, C. C.; Shacklette, L. W.; Elsenbaumer, R. L. “Solution Processing of Conductive Polyaniline”, MRS meeting, December 1991, Boston, MA.
    16. Han,C. C. “Processing of Conductive Polyaniline”, Chemistry Colloquium at University of Polytech, Brooklyn, New York City, December 1991; and at University of Rhode Island, Aprial 1992.
    17. Han, C. C. “Solubility Modification of Conductive Conjugated Backbone Polymers Via Dopant Moieties”, World Patent WO 9305519 A1 9303118, 1993, European Patent EP 060115 A1 940615, 1994.
    18. Javadi, H. H. S.; Laversanne, R.; Epstein, A. J.; Kohli, R. K.; Scherr, E. M.; MacDiarmid, A. G. Synth. Met. 1989, 29, 439.
    19. Kaiser, A. B.; Subramaniam, C. K.; Gilberd, P. W.; Wessling, B. . Synth. Met. 1995, 69, 197.
    20. Yoon, C. O.; Reghu, M.; Heeger, A. J.; Cao, Y.; Chen, T. A.; Wu, X.; Rieke, R.D. Synth. Met. 1995, 75, 229.
    21. Du, G..; Avlyanov, I.; Wu, C. Y.; Reimer, K. G..; Benatar, A.; MacDiarmid, A. G..; Epstein, A. J. Synth. Met. 1997, 85, 1339.
    22. (a)Wang, Z. H.; Li, C.; Scherr, E. M.; MacDiarmid, A. G..; Epstein, A. J. Phys. Rev. Lett. 1991,66,1745. (b) Wang, Z. H.; Scherr, E. M.; MacDiarmid, A. G..; Epstein, A. J. Phys. Rev. B 1992,45,4190.
    23. Lux, F.; Hinrichsen, G.; Krinichnyi, V. I.; Nazarova, I. B.; Cheremisow, S. D.; Pohl, M. M. Synth. Met. 1993,55-57, 347.
    24. Qiming Li, Q.; Cruz, L.; Phillips , P. Phys. Rev. B 1993,47 , 1840

    第五章
    1. Letheby, H. J. Chem. Soc. 1862, 15, 161
    2. Langer, J. Solid State Commun. 1978, 26, 839
    3. (a) Hjertberg, T.; Salaneck, W. R.; Lundstrom, I.; Somasiri, N. L. D.; MacDiarmid, A. G. J. Polym. Sci.: Polym. Lett. Ed. 1985, 23, 503. (b) Devreux, F.; Bidan, G.; Syed, A. A.; Tsintavis, C. J. Physique 1985, 46, 1595.
    4. MacDiarmid, A. G. ; Chiang, J.C. ; Richter, A.F.; Epstein, A.J. Synth. Met. 1987, 18, 285
    5. Ray, A.; Richter, A. F., Manohar, S. K., Furst, G. T., MacDiarmid, A. G.; Epstein,A. J. Synth. Met. 1989, 29, E243.
    6. Sun,Y. ; MacDiarmid, A. G. ; Epstein, A.J. J. Chem. Soc. 1990,529
    7. Han, C. C.; Hseih, W. D.; Yeh, J. Y.; Hong, S. P. Chem. Mater. 1999, 11, 480.
    8. Albuquerque, J. E.; Mattoso, L. H. C.; Balogh, D. T.; Faria, R. M.; Masters, J. G.; MacDiarmid, A. G. Synth. Met. 2000, 113, 19.
    9. Tang, J.; Jing, X.; Wang, B.; Wang, F. Synth. Met. 1988, 24, 231.
    10. Furukawa, Y.; Ueda, F.; Hyodo, Y.; Harada, I.; Nakajima, T.; Kawagoe, T. Macromolecules 1988, 21, 1297.
    11. Sariciftci, N. S.; Kuzmany, H.; Neugebauer, H.; Neckel, A. J. Chem. Phys. 1990, 92, 4530.
    12. Wudl, F.; Angus, R. O., Jr.; Allemand, P. M.; Vachon, D. J.; Norwak, M.; Liu, Z. X.; Heeger, A. J. J. Am. Chem. Soc. 1987, 109, 3677
    13. Manoher, S. K.; MacDiarmid, A. G. Synth. Met. 1991, 41-43, 711
    14. Chandrakanthi, N; Careem, M. A. Polymer Bulletin 2000 45,113
    15. Han, C. C.; Lu, C. H.; Hong, S. P. ; Yang, K. F. Macromolecules 2003, 36, 7908
    16. Cao, Y.; Smith, P.; Heeger, A. J. Synth. Met. 1989, 32, 263
    17. MacDiarmid, A. G.; Epstein, A. J. Synth. Met. 1994, 65, 103.

    第六章
    1 (a) O’Regan B., Gratzel, M. Nature 1991, 353, 737-739. (b) Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Müller, E.; Liska, P.; Vlachopoulos, N.; Grätzel, M. J. Am. Chem. Soc. 1993, 115, 6382-6390.
    2 Kalyanasundaram,K.; Gratzel, M. Coordination chemistry reviews 1998, 77, 347
    3 Hagfeldt, A.; Gratzel, M. Acc. Chem. Res. 2000, 33, 269
    4 S. K. Deb, S. Ferrere, A. J. Frank, B. A. Gregg, S. Y. Huang, A. J. Nozik, G. Schlichthorl and A. Zaban, Conference Record of the IEEE Photovoltaic Specialists Conference, p.507 (1997).
    5 Gratzel, M. Nature 2001, 414. 338
    6 Gratzel, M. Nature 1998, 395. 8
    7 Bach, U. ; Tachibana, Y.;. Moser,J. E.; Haque, S.A. ; Durrant, J.R. Gratzel, M. ; Klug, D.R. J. Am. Chem. Soc. 1999, 121, 7445-7446
    8 Saito, Y. ; Kitamura, T. ; Wada, Y. ; Yanagida, S. Synth. Met. 2002, 131, 185
    9 Tan, S.X. ; Zhai, J. ; Wan, M.X. ; Jiang, L. ; Zhu, D. B. Synth. Met. 2003, 137, 1511
    10 Tan, S.X. ; Zhai, J. ; Xue, B. ; Wan, M.X. ; Meng, Q. ; Li, Y.; Jiang, L. ; Zhu, D. B Langmuir 2004, 20, 2934
    11 Tan, S.X. ; Zhai, J. ; Wan, M.X. ; Meng, Q. ; Li, Y ; Jiang, L. ; Zhu, D. B J. Phys. Chem. B 2004, 108, 18693
    12 Senadeera, G.K.R. ; T. Kitamura, T. ; Wadab, Y. ; Yanagida, S. Journal of Photochemistry and Photobiology A: Chemistry 164 2004, 164, 61
    13 Liu, J. ; Kadnikova, E.N. ; Liu, Y. ; McGehee, M.D.; Frechet, J.M.J. J. Am. Chem. Soc. 2004, 126, 9486
    14 (a) Yue, J.; Epstein, A. J. J. Am. Chem. Soc. 1990, 112, 2800. (b) Yue, J.; Wang, Z. H.; Cromack, K. R.; Epstein, A. J.; MacDiarmid, A. G. J. Am. Chem. Soc. 1991, 113, 2665. (c) Wang, X. H.; Li, J.; Wang, L. X.; Jing, X. B.; Wang, F. S. Synth. Met. 1995, 69, 147. (d) Chen, S. A.; Hwang, G. W. Macromolecules 1996, 29, 3950. (e) Jue, Y.; Epstein, A. J.; Zhong, Z.; Gallagher, P. K.; MacDiarmid, A. G. Synth. Met. 1991, 41, 765.
    15 (a) Wei, X.; Epstein, A. J. Synth. Met. 1995, 74, 123. (b) Wei, X. L.; Wang, Y. Z.; Long, S. M.; Bobeczko, C.; Epstein, A. J. J. Am. Chem. Soc. 1996, 118, 2545. (c) Wu, Q.; Wu, L.; Qi, Z.; Wang, F. Synth. Met. 1999, 105, 13.
    16 Zhang,W.J. ; Feng, J. ; MacDiarmid,A.G. ; Epstein, A. J. Synth. Met. 1997, 84, 119
    17 R.Valaski. Electrochemistry Communication 2004. 6. 357-360
    18 Kuo, C. T.; Weng, S. Z. Polym. Adv. Technol. 2000, 11, 716.
    19 Kuo, C.T.; Weng, S. Z.; Huang, R. L. Synth. Met. 1997, 88, 101.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE