研究生: |
吳宗憲 Wu, Tsung-Tsing |
---|---|
論文名稱: |
含多壁奈米碳管之骨水泥複合材料的機械性質研究 Mechanical Properties of Acrylic Bone Cement Composites Reinforced with Multi-walled Carbon Nanotubes |
指導教授: |
葉孟考
Yeh, Meng-Kao 戴念華 Tai, Nyan-Hwa |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 96 |
中文關鍵詞: | 奈米碳管 、骨水泥 、複合材料 、溫度 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
奈米材料中的奈米碳管擁有高比強度、高比勁度等優異的物理與機械性質,故常作為補強材。本研究以壓克力骨水泥為研究主題,以骨水泥做為基材,添加不同重量百分比之多壁奈米碳管,探討此複合材料之機械性質。文中也以不同骨水泥藥粉與液態藥劑比例製作含奈米碳管之骨水泥複合材料,探討其對此複合材料機械性質之影響,並找出最適當之藥劑含量。在實驗方面,以單軸壓縮試驗及三點彎曲試驗得到骨水泥複合材料之抗壓、抗彎強度及楊氏模數等機械性質,並量測含奈米碳管之骨水泥複合材料之密度、成型溫度及玻璃轉換溫度。另使用有限單元軟體ANSYS分析骨水泥受壓縮之變形行為,探討分析與實驗結果之機械性質差異。最後以掃描式電子顯微鏡觀察骨水泥複合材料的破壞斷面,討論其破壞機制,結果顯示加入奈米碳管使骨水泥藥粉與藥劑聚合反應不完全,界面強度不佳及碳管團聚,這些因素均造成試片中空孔率增加使得機械性質下降,而改變藥劑含量至適當值可改善奈米碳管骨水泥複合材料之機械性質。奈米碳管之優良熱傳導性質可使骨水泥成型溫度降低,加入奈米碳管可使骨水泥之玻璃轉換溫度及密度提升,且含奈米碳管之骨水泥複合材料與正常成人脊椎骨的骨質密度相近,可臨床應用於人體骨骼填充及修補方面。
參 考 文 獻
[1] 馮榮豐、陳錫添,奈米工程概論,全華科技圖書股份有限公司,台灣台北,民國九十二年。
[2] S. Iijima, “Helical Microtubules of Graphitic Carbon,” Nature, Vol. 354, pp. 56-58, 1991
[3] 麥富德、黃楓台、簡國明、王永銘、陳秋燕,奈米碳管專利地圖及分析,行政院國家科學委員會科學技術資料中心,台灣台北,民國九十一年。
[4] R. F. Gibson, “Principles of Composite Material Mechanics,” McGraw-Hill, New York, 1994.
[5] A. A. White, S. M. Best and I. A. Kinloch, “Hydroxyapatite–Carbon Nanotube Composites for Biomedical Applications: A Review,” Applied Ceramic Technology, Vol. 4[1], pp. 1-13, 2007.
[6] E. T. Thostenson, Z. Ren and T. W. Chou, “Advances in the Science and Technology of Carbon Nanotubes and Their Composites: A Review,” Composites Science and Technology, Vol. 61, pp. 1899-1912, 2001.
[7] R. Andrews, D. Jacques, A. M. Rao, T. Rantell, F. Derbyshire and Y. Chen, “Nanotube Composite Carbon Fibers,” Applied Physics Letters, Vol. 75[9], pp. 1329-1331, 1999.
[8] G. J. Teng, S. C. He, G. Deng, J. H. Guo, W. Fang and G. Y. Zhu, “A Simplified Method of Opacifying and Mixing Acrylic Cement for Percutaneous Vertebroplasty: A Clinical and In Vitro Study,” Cardiovasc Intervent Radiol, Vol. 28, pp. 570–577, 2005.
[9] J. C. J. Webb and R. F. Spencer, “The Role of Polymethylmethacrylate Bone Cement in Modern Orthopaedic Surgery,” Journal of Bone and Joint Surgery, Vol. 89B, pp. 851-857, 2007.
[10] P. K. K. Wong, D. G. Spencer, P. McElduff, N. Manolios, G. Larcos and G. B. Howe, “Secondary Screening for Osteoporosis in Patients Admitted with Minimal-Trauma Fracture to a Major Teaching Hospital,” Internal Medicine Journal, Vol. 33, pp. 505-510, 2003.
[11] J. Hillmeier, I. Grafe, K. D. Fonseca, P. J. Meeder, G. Noldge, M. Libicher, H. J. Kock, M. Haag and C. Kasperk, “The Evaluation of Balloonkyphoplasty for Osteoporotic Vertebral Fractures. An Interdisciplinary Concept,” Orthopade, Vol. 33, pp. 893-904, 2004.
[12] K. T. Lau and D. Hui, “The Revolutionary Creation of New Advanced Materials-Carbon Nanotube Composites,” Composites Part B: Engineering, Vol. 33, pp. 263-277, 2002.
[13] M. F. Yu, B. S. Files, S. Arepalli and R. S. Ruoff, “Tensile Loading of Ropes of Single Wall Carbon Nanotubes and their Mechanical Properties,” Physical Review Letters, Vol. 84, No. 24, pp. 5552-5555, 2000.
[14] M. F. Yu, O. Lourie, M. Dyer, K. Moloni and T. Kelly, “Strength and Breaking Mechanism of Multi-walled Carbon Nanotubes under Tensile Load,” Science, Vol. 287, pp. 637-640, 2000.
[15] S. Xie, W. Li, Z. Pan, B. Chang, and L. Sun, “Mechanical and Physical Properties on Carbon Nanotube,’’ Journal of Physics and Chemistry of solids, Vol. 61, pp. 1153-1158, 2000.
[16] M. M. J. Treacy, T. W. Ebbesen and T. M. Gibson, “Exceptionally high Young’s Modulus Observed for Individual Carbon Nanotubes,” Nature, Vol. 381, pp. 678-680, 1996.
[17] B. G. Demczyk, Y. M. Wang, J. Cumings, M. Hetman, W. Han, A. Zettl, and R. O. Ritchie, “Direct Mechanical Measurement of the Tensile Strength and Elastic Modulus of Multiwalled Carbon Nanotubes,’’ Materials Science and Engineering A, Vol. 334, pp. 173-178, 2002.
[18] Z. Yao, C.C.Zhu, M. Cheng, and J. Liu, “Mechanical Properties of Carbon Nanotube by Molecular Dynamics Simulation,” Computation Materials Science, Vol. 22, pp. 180-184, 2001.
[19] C. F. Cornwell and L. T. Wille, “Elastic Properties of Single-walled Carbon Nanotubes in Compression,’’ Solid State Communication, Vol. 96, pp. 555-558, 1997.
[20] M. Fujii, X. Zhang, H. Xie, H. Ago, K. Takahashi, T. Ikuta, H. Abe and T. Shimizu, “Measuring the thermal conductivity of a single carbon nanotube,” Physical Review Letters, PRL 95, 065502, 2005.
[21] S. Berber, Y. K. Kwon and D. Tománek, “Unusually high thermal conductivity of carbon nanotubes,” Physical Review Letters, Vol. 84, No. 20, 2000.
[22] P. Gonnet, Z. Liang, E. S. Choi, R. S. Kadambala, C. Zhang, J. S. Brooks, B. Wang and L. Kramer, “Thermal conductivity of magnetically aligned carbon nanotube buckypapers and nanocomposites,” Current Applied Physics, Vol. 6, pp. 119-122, 2006.
[23] Y. Usui, K. Aoki, N. Narita, N. Murakami, I. Nakamura, K. Nakamura, N. Ishigaki, H. Yamazaki, H. Horiuchi, H. Kato, S. Taruta, Y. A. Kim, M. Endo, and N. Saito, “Carbon Nanotubes with High Bone-Tissue Compatibility and Bone-Formation Acceleration Effects,” Small, No. 2, pp. 240 – 246, 2008
[24] S. K. Smart, A. I. Cassady, G. Q. Lu and D. J. Martin, “ The Biocompatibility of Carbon Nanotubes, ” Carbon, Vol. 44, pp. 1034-1047, 2006.
[25] K. T. Lau, S. Q. Shi and H. M. Cheng, “Micro-mechanical Properties and Morphological Observation on Fracture Surfaces of Carbon Nanotube Composites Pre-treated at Different Temperatures,” Composites Science and Technology, Vol. 63, pp. 1161-1164, 2003.
[26] A. Allaoui, S. Bai, H. M. Cheng, and J. B. Bai, “Mechanical and Electrical Properties of a MWCNT/Epoxy Composite,’’ Composites Science and Technology, Vol. 62, pp. 1993-1998, 2002.
[27] J. D. Fidelus, E. Wiesel, F. H. Gojny, K. Schulte and H. D. Wagner, “Thermo-mechanical Properties of Randomly Oriented Carbon/Epoxy Nanocomposites,” Composites Part A, Vol. 36, pp. 1555-1561, 2005.
[28] M. Yin, J. A. Koutsky, T. L. Barr, N. M. Rodriguez, R. T. K. Baker, and L.Klebanov, “Characterization of Carbon Microfibers as a Reinforcement for Epoxy Reins,’’ Chemistry of Material, Vol. 5, pp. 1024-1031, 1993.
[29] C. A. Cooper, D. Ravich, D. Lips, J. Mayer and H. D. Wagner, “Distribution and Alignment of Carbon Nanotubes and Nanofibrils in a Polymer Matrix,” Composites Sciences and Technology, Vol. 62, pp. 1105-1112, 2002.
[30] D. S. Lim, J. W. An and H. J. Lee, “Effect of Carbon Nanotube Addition on the Tribological Behavior of Carbon/Carbon Composites,” Wear, Vol. 252, pp. 512-517, 2002.
[31] N. H. Tai, M. K. Yeh and J. H. Liu, “Enhancement of the Mechanical Properties of Carbon Nanotube/Phenolic Composites using a Carbon Nanotube Network as the Reinforcement,” Carbon, Vol. 42, pp. 2735–2777, 2004.
[32] M. K. Yeh, N. H. Tai and J. H. Liu, “Mechanical Behavior of Phenolic-based Composites Reinforced with Multi-walled Carbon Nanotubes,” Carbon, Vol. 44, pp. 1-9, 2006.
[33] J. Wang, H. Kou, X. Liu, Y. Pan and J. Guo, “ Reinforcement of Mullite with Multi-walled Carbon Nanotubes,” Ceramics International, Vol. 33, pp. 719-722, 2007.
[34] G. D. Zhan, J. D. Kuntz, J. Wan and A. K. Mukherjee, “Single-wall Carbon Nanotubes as Attractive Toughening Agents in a Aumina-based Nanocomposites,” Nature materials, Vol. 2, pp. 38-42, 2003.
[35] X.L. Shi, H. Yang, G.Q. Shao, X.L. Duan, L. Yan, Z. Xiong and P. Sun “ Fabrication and properties of W-Cu alloy reinforced by multi-walled carbon nanotubes, ” Materials Science and Engineering A, Vol. 457, pp. 18-23, 2007.
[36] O. Hjortstam, P. Isberg, S. Soderholm and H. Dai, “ Can we achieve ultra-low resistivity in carbon nanotube-based mtal composites, ” Applied physics A, Vol. 78, pp. 1175-1179, 2004.
[37] E. Bekyarova, E. T. Thostenson, A. Yu, H. Kim, J. Gao, J. Tang, H. T. Hahn, T. W. Chou, M. E. Itkis and R. C. Haddon “ Multiscale Carbon Nanotube-Carbon Fiber Reinforcement for Advanced Epoxy Composites, ” Langmuir, Vol. 23, pp. 3970-3974, 2007.
[38] R. L. Vander Wal and L. J. Hall “ Demonstration of Carbon Nanotube Coated Metals Reinforcing Polymer Matrix Composites, ” Advanced Engineering Materials, Vol. 23, pp. 48-52, 2004.
[39] M. Nottrott, A. O. Moister and N. R. Gjerdet, “Time Dependent Mechanical Properties of Bone Cement,” Journal of Biomedical Materials Research Part B:Applied Biomaterials, Vol. 83B, pp. 416-421, 2007.
[40] M. A. Puska, A. K. Kokkari, T. O. Narhi and P. K. Vallittu, ‘‘Mechanical Properties of Oligomer-modified Acrylic Bone Cement,’’ Biomaterials, Vol. 24, pp. 417-425, 2003.
[41] M. A. Puska, L. V. Lassila, T. O. Narhi, A. O. Yli-Urpo and P. K. Vallittu, “Improvement of Mechanical Properties of Oligomer-modified Acrylic Bone Cement with Glass-fibers,” Applied Composite Materials, Vol. 11, pp. 17-31, 2004.
[42] G. Lewis, ‘‘ Properties of Acrylic Bone Cement: State of The Art Review,’’ Journal of Biomedical Materials Research, Vol. 38[2], pp. 155–182, 1997.
[43] L. E. Jasper, H. Deramond, J. M. Mathis and S. M. Belkoff, “The Effect of Monomer-to-Powder Ratio on the Material Properties of Cranioplastic,” Bone, Vol. 25, no. 2, pp. 27-29, 1999.
[44] N. J. Dunnea, J. F. Orrb, M.T. Mushipeb and R. J. Eveleigh, “The Relationship Between Porosity and Fatigue Characteristics of Bone Cements,” Biomaterials, Vol. 24, pp. 239-245, 2003.
[45] W. Macaulay, C. W. DiGiovanni, A. Restrepo, K. J. Saleh, H. Walsh, L. S. Crossett, M. G. E. Peterson, S. Li and E. A. Salvati, “Differences in Bone–Cement Porosity by Vacuum Mixing, Centrifugation, and Hand Mixing,” The Journal of Arthroplasty, Vol. 17, No. 5, pp. 569-575, 2002.
[46] G. J. Teng, S. C. He, G. Deng, J. H. Guo, W. Fang and G. Y. Zhu, “A Simplified Method of Opacifying and Mixing Acrylic Cement for Percutaneous Vertebroplasty: A Clinical and In Vitro Study,” Cardiovasc Intervent Radiol, Vol. 28, pp. 570–577, 2005.
[47] J. L. Wang, M. Parnianpour, A. Shirazi-Adl, A. E. Engin, “Viscoelastic Finite-Element Analysis of a Lumbar Motion Segmen in Combined Compression and Sagittal Flexion,” Spine, Vol. 25, pp 310-318, 2000.
[48] F. Ezquerro, A. Simo´n, M. Prado, A. Pe´rez, “Combination of Finite Element Modeling and Optimization for the Study of Lumbar Spine Biomechanics Considering the 3D Thorax–pelvis Orientation,” Medical Engineering & Physics, Vol. 26, pp. 11–22, 2004.
[49] ANSYS Release 11.0, ANSYS, Inc., PA, 2006.
[50] J. W. Dally and W. F. Riley, “Experimental Stress Analysis,” New York, Mcgraw-Hill Inc., 1991.
[51] ASTM F451-99a, Standard Specification for Acrylic Bone Cement (2004).
[52] ASTM D792-00, Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement (2000).
[53] ASTM D790-03, Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, 2003.
[54] C. K. Shaw, C. H. Chen and K. Y. Tzen, “Vitamin D Receptor Alleles and Bone Mineral Density of Chinese in Taiwan,” Tzu Chi Med J, Vol. 10[2], pp. 81-86, 1998.
[55] Y. Jianguo, Y. Anjin, Z. D. Liu and C. Y. Fumei, “Postmenopausal Osteoporsis: the Study of Bone Density of Lumbar Spine,” Journal of Practical Radiology, Vol. 16, No. 1, pp. 35-36, 2000.
[56] 蔡源泉,胸腰椎骨之表面應變量測與分析,國立台灣大學醫學工程學研究所碩士論文,2004。
[57] G. Lewis, J. Xu, S. Madigan and M. R. Towler, “Influence of Two Changes in the Composition of an Acrylic Bone Cement on its Handling, Thermal, Physical, and Mechanical Properties,” Mater Med, Vol 18, pp.1649–1658, 2007