研究生: |
張勝凱 Sheng-Kai Chang |
---|---|
論文名稱: |
對於視訊串流的重要性差別保護機制 Unequal-Protected Digital FountainTM for Video Streaming over Heterogeneous Internet |
指導教授: |
王家祥
Jia-Shung Wang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 75 |
中文關鍵詞: | Unequal-Protected 、Digital Fountain 、LT codes 、video streaming |
外文關鍵詞: | Unequal-Protected, Digital Fountain, LT codes, video streaming |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著網路的發展和成熟,各式各樣的網路應用也隨之興起,其中最熱門的應用莫過於視訊串流的發展,一直以來,視訊串流的應用侷限在網路環境的不確定和異質化之下,在播放品質以及規模上無法提升。在非可靠度的網際網路之下,視訊資料無法保證可以順利播放,異質化的網路環境之下,多份滿足不同網路以及播放需求的視訊資料必須被產生及保留下來以保證對各種客戶端的服務,如此的解決方式,對視訊串流伺服器的負擔很重且不實際。是故在本論文之中,我們提出了一個一般化的重要差別性視訊資料編碼的技術,使得(1)在不確定的非可靠性網路傳輸之下,達到比較好的串流品質。(2)在面對各種異質化的客戶端時,只需要同樣的一種編碼方式而可以去服務所有的客戶端需求,大大地節省串流伺服器的負擔。
在這篇論文裡面,我們改良了所謂的Digital Fountain code,它是一種最近幾年所提出的無限制編碼率的糾錯碼,並且解碼率是以機率形式表現出來,其中最有名的是LT Codes,由Luby所提出,LT Codes的編碼以及解碼皆可在線性的時間內完成,並且實作上容易且簡單。但是在LT Codes的理論之下,並無法保證對於可能解開資料的選擇性,我們無法確定解出來的資料是原始資料的哪部分。對於每個部分有有不同重要性的視訊串流資料,直接地套用並不是一個好的解決方法。視訊串流資料的重要性差異來自於編碼方式,檔頭(header)有著最重要的層級,沒有收到並解開的話視訊就無法播放,幀間(intra)╱幀內(inter)資料其次,餘差(residual)最末。這種差異在原始的LT Code上無法被解碼率反映出來,我們透過分析並且重新設計LT Code而達到重要差異性保護的效果,而達到更好的串流效能。
論文中分析了原始LT Code的編碼圖並找出解碼率快慢的差異,然後重新設計編碼的圖形,以適應重要差異性的串流資料,最後提出了幾種重要差異性保護LT 編碼 (UEPLT Code),以及編碼器實作的架構。在論文實驗中,顯示了重要差異性保護LT 編碼在重要性差異保護效能上勝過原來的LT Code,套用於實際的串流資料時也可以在FGS串流資料上取得較佳的優勢以及串流資料的PSNR大約有2∼5db的提升。足以顯示改良後的LT可以更加勝任視訊串流服務,並且在論文中也對編碼方式和架構提出了相應的編碼器,所提出的編碼架構也保證了在任意大小輸入以及任意編碼冗餘度之下都可以運作正常並有良好的效能。
In this thesis, we proposed a channel coding mechanism for unequal important data protection, such as video streaming or layered videos, based on the concept of Luby-Transform (LT) code in digital fountain. An Unequal important data is that different parts in data have different importance, and needs being protected according to their importance in different parts. Under network environments where clients have heterogeneous bandwidth and computing power, video streaming services that provide coarse-to-fine video quality are required because the usage environments are diverse and changing dynamically. The contributions of this thesis are that we analyzed the coding graph of LT codes to conclude the factors of decoding probability and redesigned the coding graph to achieve the unequal protection requirement. As compared to LT codes, such as Reed-Solomon code, the proposed channel coding approach can better performance on PSNR of video streaming and layered video coding. Furthermore, the decoding complexity of the proposed mechanism is very low so that it can be applied on the real-time decoders, such as mobile phones, which only have limited computing power and request low delay requirement. The experiment results present that the proposed approach reaches about 3 db PSNR improvements on other LT codes on average. More significantly, the results demonstrate that the proposed approach also has better performance when it is applied on layered videos. Finally, we also proposed an novel encoder architecture for the proposed codes, and the architecture provides a flexibility and convenience to design or generate all kinds of LT-like codes.
[1] G. C. Clark and J. B. Cain, Error-Correction Coding for Digital Communications, New York: Plenum Press, 1981.
[2] S. Lin and D. J. Costello, Error Control Coding: Fundamentals and Applications, Englewood Cliffs, N.J.: Prentice-Hall, 1983.
[3] A. Barg and G. D. Forney, “Random Codes: Minimum Distances and Error Exponents,” IEEE Trans. on Inform Theory, Vol. 48, No. 9, pp.2568-2573, Sept. 2002.
[4] W. Tan and J. R. Cruz, “Analyzing Low-Density Parity-Check Codes on Partial Response Channels with Erasures Using Density Evolution,” IEEE Trans. on Magnetics, Vol.40, No. 5, pp. 3411–3418, September 2004.
[5] B. W. Stephen and V. K. Bhargava, Reed-Solomon Codes and Their Applications, Wiley Press, 1999.
[6] I. S. Reed and G. Solomon, “Polynomial Codes over Certain Finite Fields,” J. Soc. Ind. Apple. Math. 8, pp. 200-204, June 1860.
[7] M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman, “Efficient Erasure Correcting Codes,” IEEE Trans. on Information Theory, Vol. 47, No. 2, pp. 569-584, February 2001.
[8] D. Mackenzie, “Communication Speed Nears Terminal Velocity,” New Scientist 187.2507, 38-41 July 2005.
[9] S. B. Wicker, Error Control Systems for Digital Communication and Storage. Englewood Cliffs, N.J.: Prentice-Hall, 1995.
[10] S. G. Wilson, Digital Modulation and Coding, Englewood Cliffs, N.J.: Prentice-Hall, 1996.
[11] E. Piriou, C. Jego, P. Adde, B. R. Le, and M. Jezequel, “Efficient Architecture for Reed Solomon Block Turbo Code,” IEEE International Symposium on Circuits and Systems, Proceedings, 21-24 May 2006
[12] J. Li, “The Efficient Implementation of Reed-Solomon High Rate Erasure Resilient Codes,” IEEE International Conference on Acoustics, Speech, and Signal Processing, 18-23 March 2005
[13] Y. S. Kavian, A. Falahati, A. Khayatzadeh, and M. Naderi, “High Speed Reed-Solomon Decoder with Pipeline Architecture,” Proceedings of the 2ed IFIP International Conference on Wireless and Optical Communications Networks, pp. 415-419, March 2005.
[14] D. J. C. MacKay, Information Theory, Inference and Learning Algorithms, CUP 2003.
[15] T. K. Moon, Error Correction Coding, Mathematical Methods and Algorithms, Wiley, 2005.
[16] R. G. Gallager, “Low density Parity Check Codes,” IRE Trans. Inform. Theory, Vol. IT-8, pp. 21-28, Jan. 1962.
[17] D. J. C. Mackay, “Good Error-Correcting Codes Based on Very Sparse Matrices,” IEEE Trans. Inform. Theory, Vol. 45, pp. 399-431, Mar. 1999.
[18] T. Richardson, and R. Urbanke, “Efficient Encoding of Low-Density Parity-Check Codes,” IEEE Trans. Inform. Theory, Vol. 47, pp. 638-656, February 2001.
[19] T. Richardson, “Error Floors of LDPC Codes,” 41st Annual Allerton Conference on Communications, Control, and Computing, Allerton, England, October 2003.
[20] X. Y. Hu, E. Eleftheriou, and D. M. Arnold, “Regular and Irregular Progressive Edge-Growth Tanner Graphs,” IEEE Trans. Inf. Theory, Vol. l20, No. 1, pp 386-398, January 2005.
[21] T. Tian, C. R. Jones, J. D. Villasenor, and R. D. Wesel, “Selective Avoidance of Cycles in Irregular LDPC Code Construction,” IEEE Trans. Inf. Theory, Vol. 20, No. 1, pp 386-398, January 2004.
[22] H. Xiao and A. H. Banihashemi, “Improved Progressive-Edge Growth (PEG) Construction of Irregular Codes,” IEEE Communication Letters, Vol. 8, No. 12, pp 715-717, December 2004.
[23] L. Dinoi, F. Sottile, and S. Benedetto, “Design of Variable-Rate Irregular LDPC Codes with Low Error Floor,” IEEE International Conference on Communications, Seoul, Korea, May 2005.
[24] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman, and V. Stemann, “Practical Loss-Resilient Codes,” Proceedings of the 29th ACM Symposium on Theory Computing, 1997.
[25] M. Luby, M. Mitzenmacher, and A. Shokrollahi, “Analysis of Random Processes via And-Or Tree Evaluation,” Proceedings of the 9th Am~lACM-SIAM Symposium on Discrete Algorithms, January 1998.
[26] J. W. Byers, M. Luby, and M. Mitzenmacher, “A Digital Fountain Approach to Asynchronous Reliable Multicast,” IEEE J. on Selected Areas in Communications, SpecialIssue on Network Supportfor Multicast Communications, 2002.
[27] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A Digital Fountain Approach to Reliable Distribution of Bulk Data,” Proceedings of ACM SIGCOMM ’98, pp. 56–67, September 1998.
[28] M. Luby, “LT Codes,” Proc. of the 43rd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 271-282, 2002.
[29] V. Parthsarathy, J. W. Modestino, and K. S. Vastola, “Design of A Transport Coding Scheme for High-Quality Video over ATM Networks,” IEEE Trans. Circuits Systems Video Technol., Vol.7, No.2, pp.358–376, April 1997.
[30] U. Horn, K. W. Stuhlmuller, M. Link, and B. Girod, “Robust Internet Video Transmission Based on Scalable Coding and Unequal Error Protection,” Signal Processing: Image Communication, Vol. 15, No. 1-2, pp. 77-94, September 1999.