簡易檢索 / 詳目顯示

研究生: 陳ㄧ宏
I-Hong Chen
論文名稱: 利用非侷域效應增強禁制帶光孤子之穩定性及移動性
Enhanced Gap Soliton Mobility and Stability with Nonlocal Effect
指導教授: 李瑞光
Ray-Kaung Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 37
中文關鍵詞: 禁制帶光孤子非侷域效應穩定性移動性
外文關鍵詞: Gap soliton, nonlocal effect, stability, mobility
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文中,使用數值方法分析空間光孤子如何在Kerr非線性、非局域性介質,及在與光傳播方向垂直的橫截面中,具有週期性排列的光晶結構下之傳播。並且探討其穩定性和移動性。我們發現了,除在能帶結構中的全反射區裡,非局域效應會穩定光孤子的傳播外,在布拉格禁止帶當中所生成的光孤子,更能夠明顯的降低一維亮光孤子的不穩定性,且增加其移動的能力。在全反射區,慢慢增加非局域效應,光孤子就能夠脫離原本像是被週期性位能束縛的位井,跑到下一個位井當中。而調變非局域效應參數能加增光孤子的可移動性。在布拉格禁止帶當中,這樣的效應會表現的更加明顯。這樣的發現,也說明了光孤子能夠在晶格當中幾乎沒有輻射損耗的跨過晶格的位障。


    In this thesis,we analyze the existence,stability and mobility of gap solitons in photonic crystals with diffusion mechanism of the nonlinearity numerically.For the bands of Bragg gap,solitons with nonlocal effects are more stabilized and become more movable due to the combinations of non-locality effect and the oscillation tails of the wave packets. We show that gap solitons can revive an elastic-like collision even in the photonic systems due to non-locality.

    1. 簡介 1.1 歷史背景 1.2 空間光孤子 1.2.1 基本觀念 1.2.2 非線性薛定格(NLS)方程式 1.3 時間光孤子 1.4 論文大綱 2. 空間光孤子在一維周期性結構 2.1 線性能帶結構 2.2 非侷域效應 2.3 禁制帶亮光孤子的特性 2.3.1 空間上局域解的存在 2.3.2 穩定性分析 2.4 數值方法 2.4.1 Newton-Kantorvich疊代法 2.4.2 假光譜法(Pseudospectral method) 2.4.3 微步傅氏法(Split step Fourier method) 3. 光孤子的移動與交互作用 3.1 Peierls-Nabarro 位障 3.2 光孤子在週期性位井的移動 3.3 禁制帶光孤子的交互作用 4. 結論

    [1] J.S.Russell,in“14th meeting of the British Association Reports”,York(1844).
    [2] D. J. Korteweg and F. de Vries, ”On the Change of Form of Long Waves Advancing in a Rectangular Canal, and on a New Type of Long Stationary Waves.” Philosophical Magazine, 39, 422–443 (1895).
    [3] M. Ablowitz, H. Segur, Solitons and the Inverse Scattering Transform,SIAM, Philadelphia (1981).
    [4] Yuri S. Kivshar, Govind P. Agrawal. Optical solitons : from fibers to photonic crystals (Academic Press, London,2003).
    [5] Govind P. Agrawal. Nonlinear fiber optics (San Diego : Academic Press, 2001).
    [6] R. Y. Chiao, E. Garmire and C. H. Townes, Phys.Rev.Lett.,13,479
    (1964).
    [7] W.Krolikowski et al. , phys.Rev. E 64, 016612 (2001);
    J.Wyller et al., Phys. Rev. E 66, 066615 (2002);
    W.Krolikowski et al., J.Opt. B 6, S288 (2004);
    M.Peccianti,C.Conti,and G.Assanto,Phys.Rev. E 68 ,R025602 (2003).
    [8] S.K.Turitsyn, Theor. Math. Phys. (Engl. Transl.) 64,797 (1985);O.Bang et al., Phys.Rev E 66, 046619 (2002).
    [9] D.Neshev et al., Opt.Lett. 26, 1185 (2001);
    W.Krolikowski,O.Bang,and J.Wyller, Phys.Rev.E 70, 036617 (2004).
    [10] A.I.Yakimenko,Y.A.Zaliznyak,and Y.Kivshar,Phys.Rev E 71,065603(R)(2005).;B.Brieds et al.,Opt.Express 13, 435 (2005).
    [11] L.F.Mollenauve et al., Phys.Rev.Lett. 45 ,1095 (1980).
    [12] C. Kittle, Introduction to Solid State Physics, John wiley (1996).
    [13] J.A.C. Weideman and S.C.Reddy, A MATLAB differentiation matrix
    suite, ACM Trans. Math. Software, to appear
    [14] Lloyd N.Trefethen, Spectral Methods in MATLAB, Society for Industrial and Applied Mathemetics.
    [15] B. T. Polyak , Journal of Mathematical Sciences, Vol. 133, No. 4, 2006
    [16] J.W.Cooley and J.W. Tukey, Math. Comput. 19, 297(1965)
    [17] Zhiyong Xu, et al. Phys.Rev.Lett. 95,113901(2005)
    [18] Yuri S.Kivshar and David K.Campbell , Phys.Rev.E 48 , 3077(1993)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE