簡易檢索 / 詳目顯示

研究生: 陳科引
Chen, Ke-Yin
論文名稱: 在非重疊視角多相機下利用傳遞擴充特徵之人員追蹤串接技術
Human Tracking using Augmented Feature Propagation for Multiple Cameras with Non-overlapping Views
指導教授: 黃仲陵
Huang, Chung-Lin
張意政
Chang, I-Cheng
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 99
語文別: 英文
論文頁數: 84
中文關鍵詞: 多攝影機非重疊視野追蹤
外文關鍵詞: Multiple Cameras, Non-overlapping Views, Tracking
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於監視系統的普及與電腦視覺的迅速發展,傳統只利用人工來觀看的監視系統已經不符合人力成本與工作效率。因此新型態的多重攝影機監視系統,可以經由電腦視覺的方式,在廣大的監視區域可以自動偵測移動物件與連續追蹤個別人物,更進一步的辨識移動人物之身分與人物的行為分析,之後還可以增加異常行為分析。希望以完全數位化的方式來設計安全監視系統,可以減少監控者粗心而導致危險之異常事件。
    本論文主要是藉由攝影機錄製的影片來訓練出區域(exit/entry)之間的時間與空間關係,利用時間與空間的資訊,加上各個人物之間的色彩相似度,來找出人物在不同攝影機之間的相關性。除此之外,這篇論文中主要貢獻的研究是在多攝影機系統中增加一個擴充特徵,而這個特徵(如:人臉、步伐、身高…)不是每一台攝影機都可以成功抓取,在這樣的條件下,我們無法直接使用擴充特徵去做人物的對應,因為有一些的攝影機是無法擷取到擴充特徵,所以我們的研究不同於之前的研究,將攝影機的架設方式統一都可擷取新的擴充特徵,觀察辨識率提升多少,而我們提出擴充特徵可以在不同攝影機之間做傳遞,再利用傳遞之後擴充特徵來做錯誤路徑的校正。


    Due to tremendous amount of crime activities have occurred recently, Security has become the important issue. Surveillance systems have been installed in home, airports, railway stations, department stores and other places. The traditional surveillance systems have required high human cost but with low efficiency. Therefore, new types of multi-camera surveillance system can automatically detect and continuously track the moving objects based on computer vision technology.
    Under some circumstances, the tracking of human objects may fail because of light change, unusual behaviors, clothes change between cameras, or staying in the blind region for a long time. It will generate path discontinuity. In this thesis, we make use of the relaxed features matching to solve the problem of missing object tracking. Furthermore, because of the viewing angle of the cameras or the objects’ moving directions are different, the captured features are not the same. We propose a concept indicating that the feature can be propagated between different scenes. The augmented feature can be used for cascading the objects paths. We propose Augmented Feature to correct the path by using the similar appearance of the objects across multiple cameras.

    CONTENTS Chapter 1 Introduction ………………………………1 1.1 Motivation ………………………………1 1.2 Related Works ………………………………3 1.3 System Overview ………………………………5 1.4 Organization of the Thesis…………………9 Chapter 2 Pre-processing and Feature Extraction for Single Camera Capturing ……………………10 2.1 Foreground Extraction ………………………10 2.1.1 Background Subtraction………………………11 2.1.2 Morphological Filtering ……………………12 2.1.3 Labeling & Size Filter………………………13 2.1.4 Shadow Removal…………………………………14 2.2 Face Detection…………………………………16 2.3 Entry/Exit Zone Identification……………17 2.3.1 Gaussian Mixture Model………………………17 2.3.2 Expectation Maximization Algorithm………18 Chapter 3 Object-based People Tracking across Multiple Cameras ……………………………22 3.1 Observation Model ……………………………22 3.1.1 Color Histogram ………………………………22 3.1.2 Color Calibration ……………………………24 3.2 Learning Camera Network Topology…………26 3.3 Initial Path Construction …………………28 Chapter 4 Error Path Modification……………………32 4.1 Relaxed Feature Matching……………………32 4.2 Path Correction used Augmented Features 38 4.2.1 Error Path Detection Function ……………38 4.2.2 Feature Propagation Criterion ……………43 4.2.3 Path Segment Correspondence Analysis……47 4.2.4 Path Correction Using Augmented feature of Face………………………………………………52 Chapter 5 Experimental Results ………………………59 5.1 MFC Interface …………………………………60 5.2 Single Person Tracking………………………61 5.3 Multiple Persons Tracking …………………64 Chapter 6 Conclusions……………………………………81 References …………………………………………………82

    REFERENCES

    [1] J. Black, T. Ellis, and D. Makris, “Wide Area Surveilaance with a Multi-Camera Network,” In Proc. IDSS-04 Intelligent Distributed Surveillance Systems, pp. 21-25, 2003.
    [2] L . Lee, R. Romano, and G. Stein, “Monitoring Activities from Multiple Video Streams: Establishing a Common Coordinate Frame,” IEEE Trans. Pattern Analysis and Machine Intelligence, 22(8), pp.758-768, Aug 2000.
    [3] S. Khan and M. Shah, “Consistent Labeling of Tracked Objects in Multiple Cameras with Overlapping Fields of View”. IEEE Trans. Pattern Analysis and Machine Intelligence, 25(10), pp. 1355-1360, Oct. 2003.
    [4] O. Javed, Z. Rasheed, O. Alatas and M. Shah, “KNIGHTM: a real time surveillance system for multiple overlapping and non-overlapping cameras” International Conference. Multimedia and Expo, 2003. ICME '03. Proceedings, pp. 649-52, July. 2003.
    [5] Liang-Jia Zhu; Jenq-Neng Hwang and Hsu-Yung Cheng, “Tracking of multiple objects across multiple cameras with overlapping and non-overlapping views” Circuits and Systems, 2009. ISCAS 2009. IEEE International Symposium, pp. 1056 - 1060, 2009.
    [6] V. Kettnaker and R. Zabih, “Bayesian Multi-camera Surveillance,” Computer Vision and Pattern Recognition, 1999, IEEE Computer Society Conference, 1999.
    [7] F. Porikli and A. Divakaran, “Multi-Camera Calibration, Object Tracking and Query Generation,” Multimedia and Expo, 2003.ICME '03. Proceedings. 2003 International Conference, pp. I - 653-6 vol.1, Jul. 2003.
    [8] O. Javed, Z. Rasheed, K. Shafique, and M. Shah,“Tracking across Multiple Cameras with Disjoint Views,” Computer Vision, 2003. Proceedings, Ninth IEEE International Conference, pp. 952 - 957 vol.2, Oct. 2003.
    [9] O. Javed, K. Shafique, and M. Shah, “Appearance modeling for tracking in multiple non-overlapping cameras.” Computer Vision and Pattern Recognition, 2005, CVPR 200, IEEE Computer Society Conference, pp. 26 - 33 vol. 2, Jun. 2005.
    [10] O. Javed, K. Shafique, Z. Rasheed, and M. Shah, “Modeling inter-camera space–time and appearance relationships for tracking across non-overlapping views,” Computer Vision and Image Understanding, pp.146–162, 2008.
    [11] T. D'Orazio, P.L. Mazzeo; P. Spagnolo, “Color Brightness Transfer Function Evaluation for Non overlapping Multi Camera Tracking,” Distributed Smart Cameras, 2009. ICDSC 2009. Third ACM/IEEE International Conference, pp.1-6, Sep. 2009.
    [12] Kuan-Wen Chen; Chih-Chuan Lai; Yi-Ping Hung; Chu-Song Chen, “An Adaptive Learning Method for Target Tracking across Multiple Cameras,” Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference, pp.1-8, Jun. 2008.
    [13] A. Dick and M. Brooks, “A Stochastic Approach to Tracking Objects across Multiple Cameras,” In Australian Conference on Artificial Intelligence, pp.160-170, 2004.
    [14] T. J. Ellis, D. Makris, and J. Black, “Learning a Multi-Camera Topology,” In Joint IEEE Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance (VS-PETS), pp. 165-171, 2003.
    [15] C. Stauffer, “Learning to Track Objects through Unobserved Regions,” Motion and Video Computing, 2005. WACV/MOTIONS '05 Volume 2. IEEE Workshop, pp. 96-102, Jan. 2005.
    [16] N. Yunyoung, R. Junghun, C. Yoo-Joo, and C. We-Duke, “Learning Spatio-Temporal Topology of Multi-Camera Network by Tracking Multiple People,” In Proceedings of World Academy of Science, Engineering, and Technology, Vol. 24, Oct 2007.
    [17] M.O. Mehmood, “Multi-camera based Human Tracking with Non- Overlapping Fields of View,” Application of Information and Communication Technologies, 2009. AICT 2009. International Conference, pp.1-6, Oct. 2009.
    [18] E.D. Cheng, C. Madden; M. Piccardi, “Mitigating the Effects of Variable Illumination for Tracking across Disjoint Camera Views,” Video and Signal Based Surveillance, 2006. AVSS '06. IEEE International Conference, Nov. 2006.
    [19] M. Piccardi and E.D. Cheng, “Track matching over disjoint camera views based on an incremental major color spectrum histogram,” Advanced Video and Signal Based Surveillance, 2005. AVSS 2005. IEEE Conference, pp.147-152, Sept. 2005.
    [20] Bi Song and A.K. Roy-Chowdhury, “Robust Tracking in A Camera Network A Multi-Objective Optimization Framework,” Selected Topics in Signal Processing, IEEE Journal, pp.582-596, Aug. 2008.
    [21] A .Prati, I. Mikic, M.M. Trivedi and R. Cucchiara, “Detecting Moving Shadows: Algorithms and Evaluation,” IEEE Trans. Pattern Analysis and Machine Intelligence, pp.918-923, 2003.
    [22] P. Viola and M. Jones, “Rapid Object Detection using a Boosted Cascade of Simple Features,” Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference, pp. I-511 - I-518 vol.1, 2001.
    [23] D.L. Ruderman, T.W. Cronin, and C.C. Chiao, “Statistics of Cone Responses to Natural Image: Implications for Visual Coding,” J. Optical Soc. Of America, vol. 15, no. 8, 1998, pp. 2036-2045.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE