簡易檢索 / 詳目顯示

研究生: 李豐宇
Lee, Feng-Yu
論文名稱: 利用勞倫茲力致動器與弧形彈簧設計實現新型大位移微雙軸平台
Development of a Novel Dual-axis Large-displacement Microstage Using Lorentz Force Actuators and Curved-beam Springs
指導教授: 方維倫
Fang, Weileun
口試委員: 傅建中
林弘毅
方維倫
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 85
中文關鍵詞: 微平台雙軸勞倫茲力大位移
外文關鍵詞: Micro-stage, Dual-axis, Lorentz force, Large displacement
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用微機電技術,設計與製造一種新式的微型雙軸定位平台。過去的雙軸平台因為受限於致動方式先天上的缺點,使得結構設計與製程趨於複雜,而本研究提出的新式雙軸平台提出使用具有良好運動特性的勞侖茲力致動器,搭配弧形彈簧與一維耦合的機構設計,即可達到雙軸解耦合的運動;製程方面則使用磊晶矽晶圓搭配電化學蝕刻停止技術,相較過去大部分製程使用SOI晶圓,此方式能有效降低成本,且不需要使用或組裝特殊的材料,具有製程整合上的優勢。本文中也針對平台的基本操作原理與特性進行模擬與推導,並對元件量測進行載具的製作與完整的實驗規劃,最後也將量測結果與先前的研究作比較,顯示此元件具有優秀的運動特性,包括大位移輸出、高結構剛性、良好的解耦合能力與快速的響應速度,而未來也將持續的往系統整合的目標邁進。


    This thesis demonstrates the design, fabrication and characteristics of a novel 2-axis microstage. The stage is supported by curved-beam spring and driven by two Lorentz force actuators. By modulating the magnitude and direction of the linear actuators, the stage can perform 2-axis in-plane motions. The microstage has two merits: (1) Lorentz force actuator with snap-through characteristic to enlarge the microstage displacement, (2) curved-beam spring to enable the 2-axis positioning. Measurements show the typical microstage has a planar size of 3mm□3mm with output displacements of ±13 μm in X and Y-axis. Also, the decoupled capability (<2~10%) and dynamic response time (<20ms) are presented in this thesis.

    摘要 I Abstract II 誌謝 III 目錄 V 圖目錄 VII 表目錄 X 第1章 序論 1 1-1 研究動機 1 1-2 文獻回顧 2 1-2.1 壓電式致動 3 1-2.2 形狀記憶合金致動 4 1-2.3 電熱式致動 4 1-2.4 電磁式致動 6 1-2.5 靜電式致動 7 1-2.6 勞倫茲力致動 8 1-2.7 雙軸運動機構設計 9 1-3 研究目標 11 第2章 元件設計與分析 23 2-1 元件設計 23 2-1.1 勞倫茲力驅動原理 23 2-1.2 致動器設計 24 2-1.3 雙軸運動機構比較 28 2-1.4 弧形彈簧設計 29 2-2 元件特性分析 30 2-2.1 雙軸運動分析 30 2-2.2 元件特性模擬 33 第3章 元件製作與結果 48 3-1 元件製作流程 48 3-2 製程結果 50 第4章 量測與結果 61 4-1 量測架設與載具製作 61 4-2 元件特性量測 62 4-2.1 模態響應 62 4-2.2 元件位移量測 64 4-2.3 驅動特性量測 65 第5章 結論與未來工作 77 5-1 結論 77 5-2 未來工作 78 第6章 參考文獻 80

    [1] D. Zhang, C. Chang, T. Ono and M. Esashi, “A piezodriven XY-microstage for multiprobe nanorecording,” Sensors and Actuators A, vol. 108, pp. 230-233, 2003.
    [2] M. F. M. Sabri, T. Ono and M. Esashi, “Modeling and experimental validation of the performance of a silicon XY-microstage driven by PZT actuators,” Journal of Micromechanics and Microengineering, vol. 19, 2009.
    [3] Y. Li, M. Sasaki and K. Hane, “A two-dimensional self-aligning systems driven by shape memory alloy actuators,” Optics & Laser Technology Vol. 37, pp. 147-149, 2005.
    [4] W. Riethmuller, and W. Benecke, “Thermally Excited Silicon Microactuators,” IEEE Transactions on Electron Device, vol. 35, no. 6, pp. 758-763, 1988.
    [5] L. Que, J. -S. Park, and Y. B. Gianchandani, ”Bent-beam Electro-thermal Actuators for High Force Applications,” IEEE MEMS’99, Orlando, FL, 1999, pp.31-36.
    [6] J. H. Comtois, V. M. Bright, and M. W. Phipps, “Thermal Microactuators for Surface-micromachining Processes,” Proceedings of SPIE, vol. 2642, Austin, TX, 1995, pp.10-21.
    [7] J. H. Comtois, and V. M. Bright, “Applications for Surface-micromachined Polysilicon Thermal Actuators and Arrays,” Sensors and Actuators A (Physical), vol. 58, pp. 19-25, 1997.
    [8] C. -T. Wu, and W. Hsu, “An electro-thermally driven microactuator with two dimensional motion,” Microsystem Technologies ,vol. 8, pp.47-50, 2002.
    [9] K.-C. Lee, and S. S. Lee,“Deep X-ray mask with integrated electro-thermal micro xy-stage for 3D fabrication,” Sensors and Actuators A (Physical), vol. 111, pp.37-43, 2004.
    [10] W. Trimmer, “Microrobots and Micromechanical Systems,” Sensors and Actuators, vol. 19, no. 3, pp. 267 - 287, 1989.
    [11] W. Trimmer, Micromechanics and MEMS, Classic and Seminal Papers to 1990, 1st Ed., Wiley-IEEE press, 1997.
    [12] I. J. Busch-Vishniac, “The Case for Magnetically Driven Micro actuators,” Sensors and Actuators A (Physical), vol. 33, pp. 207-220, 1992.
    [13] M. Jufer, “Size Limits and Characteristic Influence of Electromagnetic Actuators,” Proceedings of 4th International Conference New Actuators, 1994, pp. 390-393.
    [14] O. Cugat, J. Delamare, and G. Reyne, “Magnetic micro-actuators and systems (MAGMAS), ” IEEE Transactions on Magnetics, vol. 39, pp. 3607-3612, 2003.
    [15] O. Cugat, J. Delamare, and G. Reyne,” Magnetic Micro-Actuators and Systems (MAGMAS)”, IEEE Transactions on magnetics, vol. 39, no. 5, pp. 3607-3612, 2003.B. Wagner, and W. Benecke, “Microfabricated actuator with moving permanent magnet,” IEEE MEMS’91, Nara, Japan, 1991, pp. 27-31.
    [16] J.-J. Choi, H. Park, K. Y. Kim, and J. U. Jeon, “Electromagnetic micro x-y stage for probe-based data stage,” Journal of Semiconductor Technology and Science, vol. 1, pp.84-93. 2001.
    [17] K. E. Petersen, “Dynamic Micromechanics on Silicon: Techniques and Devices,” IEEE Transactions on Electron Devices, vol. 25, no. 10, pp.1241-1250, 1978.
    [18] K. E. Petersen, “Micromechanical Membrane Switches on Silicon,” IBM J. Res. Develop., vol. 23, no. 4, pp.376-385, 1979.
    [19] W. C. Tang, T.-C. H. Nguyen, and R. T. Howe, “Laterally Driven Polysilicon Resonant Microstructures,” IEEE MEMS’89, Salt Lake City, UT, 1989, pp. 53-59.
    [20] Y. Sun, B. J. Nelson, D. P. Potasek and E. Enikov , “Bulk microfabricated multi-axis capacitive cellular force sensor using transverse comb drives,” Journal of Micromechanics and Microengineering, vol. 12, pp. 832-840, 2002.
    [21] Y. Sun, D. Piyabongkarn, A. Sezen, B. J. Nelson and R. Rajamani, “A high-aspect-ratio two-axis electrostatic microactuator with extended travel range,” Sensors and Actuators A, vol. 102, pp. 49-60, 2002.
    [22] C-H Kim and Y-K Kim, “Integration of a micro lens on a micro XY-stage,” Proc. SPIE – Int. Soc. Opt. Eng., Vol. 3892, pp. 109-117, 1999.
    [23] V. P. Jaecklin, C. Linder, N. F. de Rooij, J. M. Moret, R. Bischof and F. Rudolf, “Novel polysilicon comb actuators for xy-stages,” Proceedings of IEEE Micro Electro Mechanical System Workshop, pp. 147-149, 1992.
    [24] C. S. B. Lee, S. Han and N. C. MacDonald, “Single crystal silicon(SCS) XY-stage fabricated by DRIE and IR alignment,” Proceedings of IEEE Micro Electro Mechanical Systems (MEMS), pp. 28-33, 2000.
    [25] P-F Indermuhle, V. P. Jaecklin, J. Brugger, C. Linder, N. F. de Rooij and M. Binggeli, ”AFM imaging with an xy-micropositioner with integrated tip,” Sensors and Actuators A, vol. 47, pp. 562-565, 1995.
    [26] C-H Kim, H-M Jeong, J-U Jeon and Y-K Kim, “Silicon micro XY-stage with a large area shuttle and no-etching holes for SPM-based data storage,” Journal of Microelectromechanical Systems, vol. 12, pp. 470-478, 2003
    [27] Y. Lu, C. K. Pang, J. Chen, H. Zhu, J. P. Yang, J. Q. Mou, G. X. Guo, B. M. Chen and T. H. Lee, “Design, fabrication and control of a micro X-Y stage with large ultra-thin film recording media platform,” Proceedings of the 2005 IEEE/ASME International Conference on Advanced Intelligent MechatronicsMonterey, California, USA, July, 2005, pp. 19-24.
    [28] Q. Yao, P. M. Ferreira and D. Mukhopadhyay, “Development of a novel piezo-driven parallel-kinematics single crystal silicon mocropositioning XY stage,” Proc. SPIE – Int. Soc. Opt. Eng., vol. 5836, pp. 56-66, 2005.
    [29] C-H Kim and Y-K Kim, “Micro XY-stage using silicon on a glass substrate,” Journal of Micromechanics and Microengineering, vol. 13, pp. 103-107, 2002.
    [30] J. S. Han, J. S. Ko and J. G. Korvink, “Structural optimization of a large-displacement electromagnetic Lorentz force microactuator for optical switching application,” Journal of Micromechanics and Microengineering, vol. 14, pp. 1585-1596, 2004.
    [31] H-K Lee, K-S Kim and E. Yoon, “A wide-range linearly tunable optical filter using Lorentz force,” IEEE Photonics Technology Letters, vol. 16, pp. 2087-2089, 2004.
    [32] A. Cao, J. Kim and L. Lin, “Bi-directional electrothermal electromagnetic actuators,” Journal of Micromechanics and Microengineering, vol. 17, pp. 975-982, 2007.
    [33] J. Dong, D. Mukhopadhyay and P. M. Ferreira, “Design, fabrication and testing of a silicon-on-insulator (SOI) MEMS parallel kinematics XY stage,” Journal of Micromechanics and Microengineering, vol. 17, pp. 1154-1161, 2007.
    [34] J. Dong and P. M. Ferreira, “Electrostatically actuated cantilever with SOI-MEMS parallel kinematics XY stage,” Journal of Microelectromechanical Systems, vol. 18, NO. 3, pp. 641-651, 2009.
    [35] T. Kazuhiro, N. K. Ho, S. Kunihiko, M. Makoto, F. Hiroyuki and T. Hiroshi, ”A two-dimensional f-θ micro optical lens scanner with electrostatic com-drive XY-stage,” IEICE Electronics Express, vol. 2, pp. 542-547, 2005.
    [36] T. Kazuhiro, M. Makoto, F. Hiroyuki and T. Hiroshi, “A high fill-factor com-driven XY-stage with topological layer switch architecture,” IEICE Electronics Express, vol. 2, pp. 197-202, 2006.
    [37] M. Epitaux, J-M Verdeil, Y. Petremand, W. Noell and N. F. De Rooij, “Micro-machined XY stage for fiber optics module alignment,” IEEE Conference on Optical Fiber Communication, Anaheim, CA, 2005, pp131-133.
    [38] M. Feldmann and S. Büttgenbach, ” Novel Microrobots and Micromotors Using Lorentz Force Driven LinearMicroactuators Based on Polymer Magnets,” IEEE Transactions on Magnetics, VOL. 43,pp. 3891-3895, 2007.
    [39] P.C.Tse, T.C.Lai, C.K.So aand C.M.Cheng, “Large deflection of elastic composite circular springs under uniaxial compression,” International Journal of Non-Linear Mechanics, vol. 29, pp. 781-798, 1994.
    [40] http://en.wikipedia.org/wiki/Main_Page

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE