簡易檢索 / 詳目顯示

研究生: 鄭恩溢
Zheng, En-Yi
論文名稱: 以磷離子佈植於非晶矽薄膜形成PIN架構之單晶矽太陽能電池
PIN Structured Single Crystalline Silicon Solar Cell Fabricated by Phosphorus-Ion Implant on Amorphous Silicon Layer
指導教授: 王立康
Wang, Li-Karn
口試委員: 甘炯耀
Gan, Jon-Yiew
李明昌
Li, Ming-Chang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 75
中文關鍵詞: 太陽能電池單晶矽
外文關鍵詞: Solar Cell, Single Crystalline
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 矽晶太陽能電池已經發展多年,隨著各式各樣結構的電池被開發出來,效能也是日漸增加,但有些樣式繁雜的電池結構,如PERC,也意味著高額的製程成本,尤其在現今太陽能電池正處於景氣低谷的階段,並不一定適合大量生產。因此這一兩年來,我們認為傳統P型單晶太陽能電池反而是各家廠商致力研發的一塊,更何況,P型單晶矽基板成本已與多晶相差無幾,基本上傳統P型單晶太陽能電池的性能已比多年前大幅增加,其性價比也不一定比PERC或N型太陽能電池來得低。
    因此本文將以P型單晶矽基板作為基材,並在正面沉積氫化非晶矽薄膜與氮化矽阻擋層,再以磷離子佈植的方式期望形成P-I-N架構。電極則是正面銀、背面鋁。並在電池製作過程使用少數載子生命週期測試儀器了解各參數效果,例如:阻擋層厚度、佈植能量、佈植濃度與退火時間…等等,完成時使用I-V量測探究其真實光轉換效率,經一系列流程來尋找最佳化製程程序。


    A variety of crystalline silicon solar cells have been developed for many years, with their conversion sfficiencies improved day by day, However, upgradation of solar cells requires additional process cost in mass production. Thus for these two years, traditional P-type monocrystalline solar cells have become a main goal of research and development for cell manufacturers. Now, the price of the P-type single crystalline solar wafers are almost the same as that of polycrystalline solar wafers, with the CP value not lower than the N-type solar cells.
    So this thesis will focuses on the study of P-type single crystalline silicon solar cells. In the fabrication, we first deposit a hydrogenated amorphous silicon layer and then a silicon nitride layer on the front side of a P-type solar wafer. A PIN structure is subsequently formed by phosphorus ion implantation followed by high-temperature annealing. The front-side and back-side electrodes are respectively, silver and aluminum formed by screen printing. Minority carrier life time tests were carried out to understand the effects of various parameters, such as the thickness of silicon nitride, implantation energy, implantation dosage and annealing time. Finally, the conversion efficiencies of the cells were explored by I-V measurements. Among a series of processes we then found the optimal one for obtaining the best cell.

    論文目錄 III 圖片目錄 V 表格目錄 IX 第一章 序論 1 1-1 前言 1 1-2 文獻回顧 4 1-3 研究目的 6 1-4 論文架構 6 第二章 研究原理 7 2-1 半導體元件物理 7 2-1.1 半導體材料 7 2-1.2 晶體結構 8 2-1.3 半導體能帶 10 2-1.4 本質半導體 14 2-1.5 異質半導體 16 2-1.6 半導體接面 18 2-2 太陽能電池原理 21 2-2.1 太陽光譜 21 2-2.2 太陽能電池運作原理 22 2-2.3 太陽能電池等效電路 24 2-2.4 電性參數 26 2-2.5 效率損失與改善方法 28 2-2.6 背表面場(Back surface field,BSF) 31 2-2.7 氫化非晶矽(Hydrogenated amorphous silicon,a-Si:H) 32 第三章 實驗流程 34 3-1 儀器介紹 34 3-2 實驗步驟 39 3-2.1 RCA Clean 41 3-2.2 晶片表面粗糙化 43 3-2.3 沉積氫化非晶矽(a-Si:H) 44 3-2.4 SiNx阻擋層 45 3-2.5 中電流離子佈植(Ion Implantation) 45 3-2.6 水平爐管摻氫熱退火(Horizontal Furnace) 46 3-2.7 SiNx抗反射層 47 3-2.8 網印 48 3-2.9 共燒Co-Firing 49 第四章 實驗數據與討論 50 4-1 氫化非晶矽厚度比較 50 4-2 磷佈植濃度比較 54 4-3 磷佈植能量比較 56 4-4 退火時間比較 62 4-5 反射率討論 64 4-6 SEM量測背部電極BSF厚度 65 4-7 I-V量測 66 第五章 結論 70 第六章 參考文獻 73

    [1] https://cellcode.us/quotes/global-co2-sector-emissions.html
    [2] World energy outlook 2009, International Energy Agency, 2009.
    [3] https://www.nrel.gov/pv/cell-efficiency.html
    [4] R. Singh, “Why silicon is and will remain the dominant photovoltaic material,” Journal of nanophotonics, 3, (2009)
    [5] https://www.fda.gov/
    [6] https://upload.wikimedia.org/wikipedia/commons/5/56/Relative_abundance_of_elements.png
    [7] Shruti Sharma, Kamlesh Kumar Jain, and Ashutosh Sharma, “Solar cells: in research and applications a review,” Materials sciences and applications , vol. 6, pp.2642 2644, 2015.
    [8] D.M. Chapin, C.S. Fuller, and G.L. Pearson, “A new silicon p-n junction photocell for converting solar radiation into electrical power,” J. Appl. Phys., pp.676-677, 1954
    [9] A. Martin, “Next generation photovoltaics,” Institute of physics publishing, 2004.
    [10] C. Daniel, “Building integrated concentrating photovoltaics,” Renewable and sustainable energy reviews, vol. 15, pp. 603-611, 2011.
    [11] A.G. Aberle, “Surface passivation of crystalline silicon solar cells:A review,” Prog. Photovolt: Res. 8, 362-376, 2000
    [12] T. Lauinger, J. Schmidt, A.G. Aberle, and R. Hezel, “Record low surface recombination velocities on 1 Ω cm p-silicon using remote plasma silicon nitride passivation,” Appl. Phys. Lett., pp. 1232-1234, 1996
    [13] M. Taguchi, K. Kawamoto, S. Tsuge, T. Baba, H. Sakata, M. Morizane, K. Uchihashi, N. Nakamura, S. Kiyama, and O. Oota, “HITTM cells - high-efficiency crystalline Si cells with novel structure,” Prog. Photovolt: Res. 8, p.503-513, 2000
    [14] B. Hoex, J.J.H. Gielis, E. Langereis, M.C.M. Van de Sanden, and W.M.M. Kessels, “On the c-Si surface passivation mechanism by the negative-charge-dielectric Al2O3,” J. Appl. Phys., pp, 113903, 2008
    [15] S.K. Dhungel, J. Yoo, K. Kim, B. Karunagaran, H. Sunwoo, D. Mangalaraj, and J. Yi, “Effect of pressure on surface passivation of silicon solar cell by forming gas annealing,” Mater. Sci. Semicond. Process., p. 427-431, 2004
    [16] https://en.wikipedia.org/wiki/Electrical_conductor
    [17] D.A. Neamen, Semiconductor physics and devices: basic principles 2nded, Mcgraw Hill Higher Education, 2009
    [18] D.A. Neamen, Semiconductor Physics and devices: Basic Principles 4thed, US: Mc Graw Hill, 2012.
    [19] Ilja Makkonen, Martti Puska, and MSc Tuomas Rossi ,Solid-State Physics (5cr), Lecture 1, 22/2/2016.
    [20] 施敏、李明逵, 半導體元件物理與製作技術, 交通大學出版社, 2012.
    [21] https://www.nature.com/articles/nphoton.2013.65?foxtrotcallback=true
    [22] http://intro1201.blogspot.com/2016/10/
    [23] https://www.electrical4u.com/extrinsic-semiconductors/
    [24] https://energyeducation.ca/encyclopedia/Conduction_band
    [25] https://www.semanticscholar.org/paper/The-heart-of-ATLAS%3A-Commissioning-and-performance-Magrath/71090a0f4ec1b03f5118f6d037c7c329b5ac06db
    [26] https://www.laserfocusworld.com/lasers-sources/article/16566681/photovoltaics-measuring-the-sun
    [27] https://en.wikipedia.org/wiki/Sunlight
    [28] https://www.researchgate.net/figure/p-n-junction-solar-cell-with-strong-depletion-region_fig3_325334689
    [29] M.A. Green著, 曹昭陽、狄大衛、李秀文譯, 太陽電池工作原理,技術與系統應用, 五南圖書出版公司, 2009.
    [30] 翁敏航, 楊茹媛, 管鴻 ,晁成虎, 太陽能電池元件-原理、元件、材料、製程與檢測技術, 東華書局.
    [31] K. W. J. Barnham, and G. Duggan, “A new approach to high-efficiency multi-bandgap solar cells,” Journal of Applied Physic, vol. 67, pp.3490, 1990.
    [32] J. Nelson, Third generation solar cells, Department of physics imperial college london, 2007.
    [33] A. Luque, “Will we exceed 50% efficiency in photovoltaics?” Journal of Applied Physic, vol. 110, pp. 031301-1- 031301-19, 2011.
    [34] K. R. Catchpole and M.A. Green, “Third generation photovoltaics”, IEEE. (2002)
    [35] 戴寶通, 鄭晃忠, 太陽能電池技術手冊, 台灣電子材料與元件協會.
    [36] A. Martin, “Next generation photovoltaics,” Institute of physics publishing, 2004.
    [37] C. Daniel, “Building Integrated concentrating photovoltaics: A review,” Renewable and Sustainable Energy Reviews, vol. 15, pp. 603-611, 2011.
    [38] A. Morales-Acevedo, “The quantum collection efficiency of heavily doped emitters in silicon solar cells,” Solar Cells, pp. 293-300, 1990.
    [39] K. L. Chopra, P. D. Paulson, and V. Dutta, “Thin-film solar cells: an overview,” Progress in Photovoltaics: Research and Applications, 2004.
    [40] R. Eke, and A. Senturk, “Monitoring the performance of single and triple junction amorphous silicon modules in two building integrated photovoltaic (BIPV) installations,” Applied Energy, 109, 154–162, 2013.
    [41] M. Fortes, E. Comesana, J.A. Rodriguez, and P. Otero, “Updated insight into the use of μc-Si:H n-layers in a-Si:H solar cells” Thin Solid Films Volume 603, 2016
    [42] L. He, T. Inokuma, Y. Kurata, and S. Hasegawa, “Vibrational properties of SiO and SiH in amorphous SiOx:H films (0 ≤ x ≤ 2.0) prepared by plasma-enhanced chemical vapor deposition,” Journal of Non-Crystalline Solids, 185.3, 249-261, 1995.
    [43] B. Liu, L. Bai, X. Zhang, C. Wei, Q. Huang, J. Sun, and Y. Zhao, “Fill factor improvement in PIN type hydrogenated amorphous silicon germanium thin film solar cells: Omnipotent N type μc-SiOx:H layer,” Solar Energy Materials and Solar Cells, 140, 450–456, 2015.
    [44] Y. Poissant, P. Chatterjee, and P. Roca i Cabarrocas, “No benefit from microcrystalline siliconNlayers in single junction amorphous silicon p-i-n solar cells,” Journal of Applied Physics, 93(1), 170–174, 2003.
    [45] X. Zhu, L. Wang, and D. Yang, “Ivestigations of random pyramid texture on the surface of single-crystalline silicon for solar cells” Proceedings of ISES World Congress, pp .1126 1130, 2009
    [46] K. H. Jun, J. D. Ouwens, R. E. I. Schropp, J. Y. Lee, J. H. Choi, H. S. Lee, and K. S. Lim, “Low degradation and fast annealing effects of amorphous silicon multilayer processed through alternate hydrogen dilution,” Journal of Applied Physics, 88(8), 4881, 2000.
    [47] F. Duerinckx, and J. Szlufcik, “Defect passivation of industrial multicrystalline solar cells based on PECVD silicon nitride,” Solar Energy Materials and Solar Cells, 72(1-4), 231–246, 2002.
    [48] A. K. Covington, “Quick reference manual for silicon integrated-circuit Technology,” Electrochimica Acta, 31(12), 1679, 1986.
    [49] S. Selberherr, “Analysis and simulation of semiconductor devices,” Mathematics and Computers in Simulation, 27(2-3), 269–270, 1960.

    QR CODE