簡易檢索 / 詳目顯示

研究生: 黃嬌嬋
Chiao-Chung Huang
論文名稱: 添加氧化鋁之硼矽玻璃的束縛燒結
Constrain Sintering of Ceramic-filled Glass
指導教授: 簡朝和
Jau-ho Jean
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 38
中文關鍵詞: 硼矽玻璃束縛燒結燒結驅動力
外文關鍵詞: contrain sintering
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以添加氧化鋁的硼矽玻璃系統為研究對象,進行由外加應力之束縛燒結的應力分析。實驗以熱機械分析儀,對試片施以固定的壓力,量測系統在不同溫度下之完全束縛燒結應力,發現其值與溫度相關,隨著溫度變化,範圍介於30-220kPa之間,當溫度增高,在725~800℃之間有一最大值,過此溫度後,應力值隨著溫度升高而降低。
    此外,對試片施以週期性壓力,可由系統高溫時之應變行為,輔以黏性流動之構成方程式,求得理論束縛燒結應力與燒結驅動力,發現其值與由實驗量測所得之完全束縛燒結應力有相同之趨勢,且完全束縛燒結應力的理論值與實驗值有一良好之近似性。


    目 錄 1.簡介-----1 2.實驗方法-----3 2.1 漿料備製-----3 2.2 刮刀製程-----4 2.3 疊壓-----4 2.4 脫脂除碳-----4 2.5 燒結-----5 2.6 微結構觀察-----5 3.結果討論-----5 3.1 固定外加應力之束縛燒結-----5 3.1.1 束縛燒結之Z軸應變曲線-----5 3.1.2 束縛燒結之X-Y軸應變曲線-----6 3.1.3 束縛燒結之緻密行為-----8 3.1.4 束縛燒結之微結構觀察-----9 3.2 週期性外加應力之束縛燒結-----9 3.2.1 束縛燒結之應變行為-----10 3.2.2 單軸向黏度值的量測-----13 3.2.3 燒結體在高溫之流變行為-----14 3.2.4 完全束縛燒結應力-----15 3.2.5 燒結驅動力-----15 3.2.6 燒結驅動力對緻密行為之影響-----18 3.2.7 束縛燒結應力理論值與實驗值之比較-----18 4.結論-----19 5.參考文獻-----20

    參考文獻
    [1] W.A. Vitrio and R.L. Brown, “Process for Fabricating Dimensionally
    Stable Interconnect Boards,” US patent No. 4,656,552, 1987.
    [2] K.R. Mikeska and D.T. Schaefer, “Method for Reducing Shrinkage during Firing of Ceramic Bodies,” US patent 5,454,741, 1994.
    [3] B. Geller, B. Thaler, A. Fathy, M.J. Liberatore, H.D. Chen, G. Ayers, V. Pendrick and Y. Narayan, “LTCC-M: An Enabling Technology for High Performance Multilayer RF Systems,” J. Microwave, 7, 64-72 (1999).
    [4] J. Bang and G.Q. Lu, “Constrained-Film Sintering of a Borosilicate Glass: In-situ Measurement of Film Stress,” J. Am. Ceram. Soc., 78 [3] 813-15 (1995).
    [5] T.J. Garino and H.K. Bowen, “Deposition and Sintering of Particle Films on a Rigid Substrate,” J. Am. Ceram. Soc., 70 [11] C315-17 (1987).
    [6] T.J. Garino and H.K. Bowen, “Kinetics of Constrained-Film Sintering,” J. Am. Ceram. Soc., 73 [2] 251-57 (1990).
    [7] G. W. Scherer and T. Garino, “Viscous Sintering on a Rigid Substrate,” J. Am. Ceram. Soc., 68 [4] 216-20 (1985).
    [8] R.K. Bordia and R. Raj, “Sintering Behavior of Ceramic Films Constrained by a Rigid Substrate,” J. Am. Ceram. Soc., 68 [6] 287-92 (1985).
    [9] S.Y. Tzeng and J.H. Jean, “Stress development during Constrained Sinetring of Alumina/Glass/Alumina Sandwich Structure,” J. Am. Ceram. Soc., 85 [2] 335-40 (2002).
    [10] Y.C. Lin and J.H. Jean, “Constrained Densification Kinetics of Alumina/Borosilicate Glass+Alumina/Alumina Sandwich Structure,” J. Am. Ceram. Soc., 85 [1] 150-54 (2002).
    [11] Y.C. Lin and J.H. Jean, “Constrained Sintering of Silver Circuit Paste,” J. Am. Ceram. Soc., in press (2003).
    [12] E.G. Liniger, R. Raj and D. B. Marshall, “The Instability of Polycrystalline Thin Films: Experiments and Theory,” J. Mater. Res., 5 [1] 151-60 (1990).
    [13] A. Jagota and C.Y. Hui, “Mechanics of Sintering Thin Films – I. Formulation and Analytical Results,” Mech. Mater., 9, 107-19 (1990).
    [14] A. Jagota and C.Y. Hui, “Mechanics of Sintering Thin Films – II. Cracking due to Self-Stress,” Mech. Mater., 11, 221-34 (1991).
    [15] R. K. Bordia and A. Jagota, “Crack Growth and Damage in Constrained Sintering Films,” J. Am. Ceram. Soc., 76 [10] 2475-85 (1993).
    [16] T. Cheng and R. Raj, “Flaw Generation During Constrained Sintering of Metal-Glass Multilayer Films,” J. Am. Ceram. Soc., 72 [9] 1649-55 (1989).
    [17] R.K. Bordia and G.W. Scherer, “On Constrained Sintering – I, Constitutive Model for a Sintering Body,” Acta. Metall., 36 [9] 2393-97 (1988).
    [18] R.K. Bordia and G.W. Scherer, “On Constrained Sintering – II, Comparison of Constitutive Models,” Acta. Metall., 36 [9] 2399-2409 (1988).
    [19] R.K. Bordia and G.W. Scherer, “On Constrained Sintering – I, Rigid Inclusions,” Acta. Metall., 36 [9] 2411-16 (1988).
    [20] G.W. Scherer, “Viscous Sintering under a Uniaxial Load,” J. Am. Ceram. Soc., 69 [9] C-206-07 (1986).
    [21] M.N. Rahaman, L.C. DE Jonghe, G.W. Scherer and R.J. Brook, “Creep and Densification during Sintering of Glass Powder Compacts,” J. Am. Ceram. Soc., 70 [10] 766-74 (1987).
    [22] V.C. Ducamp and R. Raj, “Shear and Densification of Glass Powder Compacts,” J. Am. Ceram. Soc., 72 [5] 798-804 (1989).
    [23] P.Z. Cai, G.L. Messing and D.L. Green, “Determination of the Mechanical Response of Sintering Compacts by Cyclic Loading Dilatometry,” J. Am. Ceram. Soc., 80 [2] 445-52 (1997).
    [24] J.H. Jean and C.R. Chang, “Cofiring Kinetics and Mechanisms of an Ag-metallized Ceramic Filled Glass Electronic Package,” J. Am. Ceram. Soc., 80 [12] 3084-92 (1997).
    [25] D.C.C. Lam, F.F. Lange, and A.G. Evans, ”Mechanical Properties of Partially Dense Alumina Produced from Powder Compacts, ”J. Am. Ceram, Soc., 77 [8] 2113-17 (1994).
    [26] D.J. Green, C. Nader, and R. Brezny, “The Elastic Behavior of Partially-Sintered Alumina,” ;pp.345-56 in Ceramic Transactions, Vol.7, Sintering of Advanced Ceramics. Edited by C.A. Handwerker, J.E. Blendall, and W.A. Kaysser. Aemrican Ceramic Society, Westervile, OH, 1990.
    [27] S.C. Nanjangud, R. Brezny, and D.J. Green, ”Strength and Young’s Modulus Behavior of a Partially Sintered Porous Alumina,” J. Am. Ceram. Soc., 78 [1] 266-68 (1995).
    [28] W. D. Kingery, H. K. Bowen, D. R. Uhlmann, Introduction to Ceramics, 2nd ed., Wiley, New York, 1976, Chap. 15.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE