簡易檢索 / 詳目顯示

研究生: 王翊庭
Wang, Yi-Ting.
論文名稱: 金/二硫化鉬/硫摻雜石墨烯量子點之類過氧化酶活性快速檢測2-硫醇苯駢塞唑研究
Peroxidase-Like Activity of Au/MoS2/SGQDs for Rapid Detection of 2-Mercaptobenzothiazole in Water Environment
指導教授: 董瑞安
Doong, Ruey-An
口試委員: 黃志清
Huang, Chih-Ching
黃郁棻
Huang, Yu-Fen
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 113
中文關鍵詞: 二硫化鉬石墨烯量子點奈米金粒子奈米酶類過氧化酶2-硫醇苯駢塞唑
外文關鍵詞: Molybdenum disulfide, Graphene quantum dots, Gold nanoparticle, Nanozyme, Peroxidase-like, 2-Mercaptobenzothiazole
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高度的工業發展與科技的進步,衍生出許多環境污染的問題,存在於水環境中的致癌物質比比皆是,近年來,為了改善以往使用液相層析儀檢測之昂貴、耗時與廢液等問題,生物(Biosensor)及化學感測器(Chemical Sensor)的研究推陳出新。故本研究期望開發一簡單、經濟、快速兼具高靈敏度與選擇性之方法,檢測由國際癌症研究中心(IARC)列為Group 2A級之致癌物2-硫醇苯駢塞唑(MBT),其主要來自橡膠製品製造所需硫化促進劑與工業用抗腐蝕劑。本研究成功複合過渡金屬二硫化物(TMD)的奈米片狀二硫化鉬(MoS2)與硫摻雜石墨烯量子點(SGQDs)形成MoS2/SGQDs,並修飾奈米金粒子(Au nanoparticles)於表面上,製備出Au/MoS2/SGQDs,作為一新型的奈米酶材料,並利用其類過氧化酶之活性催化過氧化氫(H2O2)與3,3',5,5'-四甲基聯苯胺(TMB)所組成的系統,透過Au/MoS2/SGQDs之間MBT化學鍵的生成,影響催化之活性並有效地檢測水中MBT濃度;結果顯示,本開發之系統對MBT的感測濃度範圍為10 nM至1200 nM,R2值高達0.994,最低偵測極限(LOD)可達0.3324 nM,低於US EPA之規範值約100倍。此外,Au/MoS2/SGQDs對MBT具有很高的選擇性,不受複雜基質存在下影響表現,已成功應用於自來水、河水與埤塘水樣,其回收率在90±2 %至113±5%之間,為未來對於檢測低濃度而高毒性的環境致癌因子MBT提供一具有發展潛力之分析方向。


    Rapid industrial and technological development entails many environmental issues including the presence of carcinogens in the water environment. A number of research have been conducted focusing on the detection of these pollutants as key to solving these environmental problems. However, most of these technologies are costly, time consuming and produces waste liquid from the detection system such as high performance liquid chromatography detection. Due to this, research on biosensor and chemical sensor were innovated having advantages such as relatively cheap, fast detection mechanism and avoid the production of waste liquid.
    In this study, we expect to develop a simple, economical and rapid method with high sensitivity and selectivity to detect 2-Mercaptobenzothiazole (MBT), which is classified as Group 2A carcinogens level by the International Cancer Research Center (IARC). The combination of molybdenum disulfide nanosheet (MoS2) from transition metal disulfide (TMD) family, sulfur-doped graphene quantum dots (SGQDs), and modified Au nanoparticles on the surface, forming Au/MoS2/SGQDs novel nanocomposite was successfully synthesized in this work. Au/MoS2/SGQDs were prepared as a new type of nanozyme material which uses its intrinsic peroxidase-like activity to catalyze the reaction between hydrogen peroxide (H2O2) and 3,3’,5,5’-tetramethylbenzidine (TMB).
    Through the formation of Au-S bond between MBT and Au/MoS2/SGQDs, the catalytic activity was greatly influenced by the various concentration of MBT in solution. Under optimal conditions, the results show that the concentration range of MBT detection in this system is from 10 nM to 1200 nM having R2 value of 0.994, and the lowest detection limit (LOD) can reach up to 0.3324 nM, which is about 100 times lower than the US EPA regulation. In addition, Au/MoS2/SGQDs exhibits high selectivity toward MBT detection over 19 other interferences. It has also been successfully applied to tap water, river water and pond water with a recovery in the range of 90±2 to 113±5 %. This sensing system can serve as a new avenue for sensor system in the effective detection of carcinogens in the water environment.

    中文摘要................I Abstract...............II 致謝....................III 目錄....................V 圖目錄...................IX 表目錄...................XIII 第一章 緒論...............1 第二章 文獻回顧............6 第三章 實驗方法與步驟.......34 第四章 結果與討論...........51 第五章 結論與建議...........101 參考文獻...................103

    1. F. Manea, F.B. Houillon, L. Pasquato, P. Scrimin. Nanozymes: Gold-Nanoparticle Based Transphosphorylation Catalysts, Angewandte Chemie, 43 (2004) 6165-6169.
    2. R. Breslow, Artificial enzymes. Science, 218 (1982) 532-537.
    3. G. Tsaprailis, D.W.S. Chan, A.M. English. Conformational States in Denaturants of Cytochrome c and Horseradish Peroxidases Examined by Fluorescence and Circular Dichroism. Biochemistry, 37 (1998) 2004-2016.
    4. N. Angelescu, S. Romano, V.A. Zagrebnov. On Long-Range Order in Low Dimensional Lattice-Gas Models of Nematic Liquid Crystals. Physics Letters A, 200 (1995) 433-437.
    5. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I. V. Grigorieva, A. A. Firsov. Electric Field Effect in Atomically Thin Carbon Films. Science, 306 (2004) 666-669.
    6. K. Mao, Z. Wu, Y. Chen, X. Zhou, A. Shen, J. Hu. A Novel Biosensor Based on Single-Layer MoS2 Nanosheets for Detection of Ag+. Talanta, 132 (2015) 658-663.
    7. T.N. Narayanan, C.S.R. Vusa, S.Alwarappan. Selective and Efficient Electrochemical Biosensing of Ultrathin Molybdenum Disulfide Sheets. Nanotechnology, 25 (2014) 409601.
    8. X. Wang, F. Nan, J. Zhao, T. Yang, T. Ge, K. Jiao. A Label-Free Ultrasensitive Electrochemical DNA Sensor Based on Thin-Layer MoS2 Nanosheets with High Electrochemical Activity. Biosensors and Bioelectronics, 64 (2015) 386-391.
    9. J. Huang, Y. He, J. Jin, Y. Li, Z. Dong, R. Li. A Novel Glucose Sensor Based on MoS2 Nanosheet Functionalized with Ni Nanoparticles. Electrochimica Acta, 136 (2014) 41-46.
    10. M. Donarelli, S. Prezioso, F. Perrozzi, F. Bisti, M. Nardone, L. Giancaterini, C. Cantalini, L.Ottaviano. Response to NO2 and Other Gases of Resistive Chemically Exfoliated MoS2-Based Gas Sensors, Sensors and Actuators B: Chemical, 207 (2015) 602-613.
    11. L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang, N. Gu, T. Wang, J. Feng, D. Yang, S. Perretti, X. Yan. Intrinsic Peroxidase-Like Activity of Ferromagnetic Nanoparticles, Nature Nanotechnology, 2 (2007) 577-583.
    12. L. Huang, W. Zhu, W. Zhang, K. Chen, J. Wang, R. Wang, Q. Yang, N. Hu, Y. Suo, J. Wang. Layered Vanadium(IV) Disulfide Nanosheets as a Peroxidase-Like Nanozyme for Colorimetric Detection of Glucose. Microchimica Acta, 185 (2017) 7.
    13. A. Khataee, M.H. Irani-Nezhad, J. Hassanzadeh. Improved Peroxidase Mimetic Activity of a Mixture of WS2 Nanosheets and Silver Nanoclusters for Chemiluminescent Quantification of H2O2 and Glucose. Microchimica Acta, 185 (2018) 190.
    14. T. Lin, L. Zhong, L. Guo, F. Fu, G. Chen. Seeing diabetes: Visual Detection of Glucose Based on the Intrinsic Peroxidase-Like Activity of MoS2 Nanosheets. Nanoscale, 6 (2014) 11856-11862.
    15. J. Yu, D. Ma, L. Mei, Q. Gao, W. Yin, X. Zhang, L. Yan, Z. Gu, X. Ma, Y. Zhao.Peroxidase-Like Activity of MoS2 Nanoflakes with Different Modifications and Their Application for H2O2 and Glucose Detection. Journal of Materials Chemistry B, 6 (2018) 487-498.
    16. T.M. Chen, X.J. Wu, J.X. Wang, G.W. Yang. WSe2 Few Layers with Enzyme Mimic Activity for High-Sensitive and High-Selective Visual Detection of Glucose. Nanoscale, 9 (2017) 11806-11813.
    17. X. Wu, T. Chen, J. Wang, G. Yang. Few-layered MoSe2 Nanosheets as an Efficient Peroxidase Nanozyme for Highly Sensitive Colorimetric Detection of H2O2 and Xanthine. Journal of Materials Chemistry B, 6 (2018) 105-111.
    18. M. Nauck, W. Ma¨rz, H. Wieland. Is Lipoprotein Cholesterol a Significant Indicator of Cardiovascular Risk ? Clinical Chemistry, 46 (2000) 436-437.
    19. T. Lin, L. Zhong, H. Chen, Z. Li, Z. Song, L. Guo, F. Fu. A Sensitive Colorimetric Assay for Cholesterol Based on the Peroxidase-Like Activity of MoS2 Nanosheets. Microchimica Acta, 184 (2017) 1233-1237.
    20. Y. Lu, J. Yu, W. Ye, X. Yao, P. Zhou, H. Zhang, S. Zhao, L. Jia. Spectrophotometric Determination of Mercury(II) Ions based on Their Stimulation Effect on the Peroxidase-Like Activity of Molybdenum Disulfide Nanosheets. Microchimica Acta, 183 (2016) 2481-2489.
    21. Y. Wang, Y. He, R. Peng, S. Chu. Facile Colorimetric Assay for Trinitrotoluene Based on the Intrinsic Peroxidase-Like Activity of MoS2 Nanosheets. Analytical Methods, 9 (2017) 2939-2946.
    22. W.S. Hummers, Jr, R.E. Offeman, Preparation of Graphitic Oxide. Journal of the American Chemical Society, 80 (1958) 1339.
    23. Y. Song, K. Qu, C. Zhao, J. Ren, X. Qu. Graphene Oxide: Intrinsic Peroxidase Catalytic Activity and Its Application to Glucose Detection. Advanced Materials, 22 (2010) 2206-2210.
    24. F. Qu, T. Li, M. Yang. Colorimetric Platform for Visual Detection of Cancer Biomarker Based on Intrinsic Peroxidase Activity of Graphene Oxide. Biosensors & Bioelectronics, 26 (2011) 3927-3931.
    25. J. Tian, Q. Liu, A.M. Asiri, A.H. Qusti, A.O. Al-Youbi, X. Sun. Ultrathin Graphitic Carbon Nitride Nanosheets: A Novel Peroxidase Mimetic, Fe Doping-Mediated Catalytic Performance Enhancement and Application to Rapid, Highly Sensitive Optical Detection of Glucose. Nanoscale, 5 (2013) 11604-11609.
    26. A.J. Stone, D.J. Wales. Theoretical Studies of Icosahedral C60 and Some Related Species. Chemical Physics Letters, 128 (1986) 501-503.
    27. G.L. Luque, M.I. Rojas, G.A. Rivas, E.P.M. Leiva. The Origin of the Catalysis of Hydrogen Peroxide Reduction by Functionalized Graphene Surfaces: A Density Functional Theory Study. Electrochimica Acta, 56 (2010) 523-530.
    28. X. Hai, J. Feng, X. Chen, J. Wang. Tuning the Optical Properties of Graphene Quantum Dots for Biosensing and Bioimaging. Journal of Materials Chemistry B, 6 (2018) 3219-3234.
    29. A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S.K. Saha, U.V. Waghmare, K. S. Novoselov, H.R. Krishnamurthy, A. K. Geim, A. C. Ferrari, A. K. Sood. Monitoring Dopants by Raman Scattering in an Electrochemically Top-Gated Graphene Transistor. Nature Nanotechnology, 3 (2008) 210-215.
    30. E.H. Hwang, S. Adam, S.D. Sarma. Transport in Chemically Doped Graphene in the Presence of Adsorbed Molecules. Physical Review B, 76 (2007) 195421
    31. Y. Wang, Y. Shao, D.W. Matson, J. Li, Y. Lin. Nitrogen-Doped Graphene and Its Application in Electrochemical Biosensing. ACS Nano, 4 (2010) 1790-1798.
    32. Y. Dai, H. Long, X. Wang, Y. Wang, Q. Gu, W. Jiang, Y. Wang, C. Li, T. H. Zeng, Y. Sun, J. Zeng. Versatile Graphene Quantum Dots with Tunable Nitrogen Doping. Particle & Particle Systems Characterization, 31 (2014) 597-604.
    33. Q. Liu, B. Guo, Z. Rao, B. Zhang, J.R. Gong. Strong Two-Photon-Induced Fluorescence from Photostable, Biocompatible Nitrogen-Doped Graphene Quantum Dots for Cellular and Deep-Tissue Imaging. Nano Letters, 13 (2013) 2436-2441.
    34. Y. Zhang, C. Wu, X. Zhou, X. Wu, Y. Yang, H. Wu, H. Wu, S. Guo, J. Zhang. Graphene Quantum Dots/Gold Electrode and Its Application in Living Cell H2O2 Detection. Nanoscale, 5 (2013) 1816-1819.
    35. A.X. Zheng, Z.X. Cong, J.R. Wang, J. Li, H.H. Yang, G.N. Chen. Highly-Efficient Peroxidase-Like Catalytic Activity of Graphene Dots for Biosensing. Biosensors and Bioelectronics, 49 (2013) 519-524.
    36. N.R. Nirala, S. Abraham, V. Kumar, A. Bansal, A. Srivastava, P.S. Saxena. Colorimetric Detection of Cholesterol Based on Highly Efficient Peroxidase Mimetic Activity of Graphene Quantum Dots. Sensors and Actuators B: Chemical, 218 (2015) 42-50.
    37. Y. Song, X. Wang, C. Zhao, K. Qu, J. Ren, X. Qu. Label-Free Colorimetric Detection of Single Nucleotide Polymorphism by Using Single-Walled Carbon Nanotube Intrinsic Peroxidase-Like Activity. Chemistry – A European Journal, 16 (2010) 3617-3621.
    38. L. Lin, X. Song, Y. Chen, M. Rong, T. Zhao, Y. Wang, Y. Jiang, Xi Chen. Intrinsic Peroxidase-Like Catalytic Activity of Nitrogen-Doped Graphene Quantum Dots and Their Application in the Colorimetric Detection of H2O2 and Glucose. Analytica Chimica Acta, 869 (2015) 89-95.
    39. B. Shi, Y. Su, Y. Duan, S. Chen, W. Zuo. A Nanocomposite Prepared from Copper(II) and Nitrogen-Doped Graphene Quantum Dots with Peroxidase Mimicking Properties for Chemiluminescent Determination of Uric Acid. Microchimica Acta, 186 (2019) 397.
    40. H. Wang, C. Liu, Z. Liu, J. Ren, X. Qu. Specific Oxygenated Groups Enriched Graphene Quantum Dots as Highly Efficient Enzyme Mimics. Small, 14 (2018) 1703710.
    41. W. Shi, Q. Wang, Y. Long, Z. Cheng, S. Chen, H. Zheng, Y. Huang. Carbon Nanodots as Peroxidase Mimetics and Their Applications to Glucose Detection. Chemical Communications (Camb), 47 (2011) 6695-6697.
    42. Y.M. Wang, J.W. Liu, G.B. Adkins, W. Shen, M.P. Trinh, L.Y. Duan, J. H. Jiang, W. Zhong. Enhancement of the Intrinsic Peroxidase-Like Activity of Graphitic Carbon Nitride Nanosheets by ssDNAs and Its Application for Detection of Exosomes. Analytical Chemistry, 89 (2017) 12327-12333.
    43. Environmental Protection Agency, 2-Mercaptobenzothiazole : Final Test Rule, Federal Register, 53(1988) 34514-34531
    44. Y. Yoshioka, Y. Ose. A Quantitative Structure—Activity Relationship Study and Ecotoxicological Risk Quotient for the Protection from Chemical Pollution, Environmental Toxicology and Water Quality. 8 (1993) 87-101.
    45. H.D. Wever, H. Verachtert. 2-Mercaptobenzothiazole Degradation in Laboratory Fed-Batch Systems. Applied Microbiology and Biotechnology, 42 (1994) 623-630.
    46. S. Jutao, W. Lili, L. Xiaoling, L. Yunhao, S. Xuehong. The Preparation of Multifunctional Accelerators Derived from Tea Phenols and Their Use in Rubber Compounds. Journal of Elastomers & Plastics, 50 (2017) 58-70.
    47. H. Parham, F. Khoshnam. Highly Efficient and Simultaneous Removal of 2-Mercaptobenzothiazole and 2-Mercaptobenzoxazole from Water Samples by Copper Oxide Nanoparticles. Journal of Chemical Technology & Biotechnology, 88 (2013) 1736-1743.
    48. Y. Qin, H. Li, J. Lu, Y. Ding, C. Ma, X. Liu, P. Huo, Y. Yan. Photocatalytic Degradation of 2-Mercaptobenzothiazole by a Novel Bi2WO6 Nanocubes/In(OH)3 Photocatalyst: Synthesis Process, Degradation Pathways, and an Enhanced Photocatalytic Performance Mechanism Study. Applied Surface Science, 481 (2019) 1313-1326.
    49. Z. Zhu, C. Ma, K. Yu, Z. Lu, Z. Liu, Y. Yan, X. Tang, P. Huo. Fabrication of CoFe2O4-Modified and HNTs-Supported g-C3N4 Heterojunction Photocatalysts for Enhancing MBT Degradation Activity under Visible Light. Journal of Materials Science, 55 (2019) 4358-4371.
    50. W. Gries, K. Kupper, G. Leng. Rapid and Sensitive LC-MS-MS Determination of 2-Mercaptobenzothiazole, a Rubber additive, in Human Urine. Analytical and Bioanalytical Chemistry, 407 (2015) 3417-3423.
    51. A. Golzhauser, C. Woll. Interfacial Systems Chemistry: Out of the Vacuum--Through the Liquid-into the Cell. Physical Chemistry Chemical Physics, 12 (2010) 4273-4274.
    52. J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides. Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chemical Reviews, 105 (2005) 1103-1169.
    53. C. Vericat, M.E. Vela, G. Benitez, P. Carro, R.C. Salvarezza. Self-Assembled Monolayers of Thiols and Dithiols on Gold: New Challenges for a Well-Known System. Chemical Society Reviews, 39 (2010) 1805-1834.
    54. Y. Yu, Y. Hong, Y. Wang, X. Sun, B. Liu. Mecaptosuccinic Acid Modified Gold Nanoparticles as Colorimetric Sensor for Fast Detection and Simultaneous Identification of Cr 3+. Sensors and Actuators B: Chemical, 239 (2017) 865-873.
    55. Y. Li, P. Wu, H. Xu, Z. Zhang, X. Zhong, Highly selective and sensitive visualizable detection of Hg2+ based on anti-aggregation of gold nanoparticles, Talanta, 84(2011) 508-512.
    56. W. Jin, P. Huang, G. Wei, Y. Cao, F. Wu. Visualization and Quantification of Hg2+ Based on Anti-Aggregation of Label-Free Gold Nanoparticles in the Presence of 2-Mercaptobenzothiazole. Sensors and Actuators B: Chemical, 233 (2016) 223-229.
    57. H. Parham, B. Aibaghi, J. Ghasemi. Simultaneous Square Wave Voltammetric Determination of 2-Mercaptobenzothiazole and 2-Mercaptobenzoxazole by Partial Least Squares Method in Water Samples. Journal of Hazardous Materials, 151 (2008) 636-641.
    58. D. Li, Z. Fan. Phosphorescence Detection of 2-Mercaptobenzothiazole in Environmental Water Samples by Mn-Doped ZnS Quantum Dots. New Journal of Chemistry, 41 (2017) 4763-4766.
    59. H.L. Tran, R.A. Doong. Sustainable Fabrication of Green Luminescent Sulfur-Doped Graphene Quantum Dots for Rapid Visual Detection of Hemoglobin. Analytical Methods, 11 (2019) 4421-4430.
    60. S. Sarkar, D. Gandla, Y. Venkatesh, P.R. Bangal, S. Ghosh, Y. Yang, S. Misra. Graphene Quantum Dots from Graphite by Liquid Exfoliation Showing Excitation-Independent Emission, Fluorescence Upconversion and Delayed Fluorescence. Physical Chemistry Chemical Physics, 18 (2016) 21278-21287.
    61. Y. Dong, J. Shao, C. Chen, H. Li, R. Wang, Y. Chi, X. Lin, G. Chen. Blue Luminescent Graphene Quantum Dots and Graphene Oxide Prepared by Tuning the Carbonization Degree of Citric Acid. Carbon, 50 (2012) 4738-4743.
    62. S. Kumar, A.K. Ojha, B. Ahmed, A. Kumar, J. Das, A. Materny. Tunable Emission by High-Yield Graphene Quantum Dots and Exploiting its Unique Properties towards Sun-Light-Driven Photocatalysis and Supercapacitor Electrode Materials. Materials Today Communications, 11 (2017) 76-86.
    63. N.T.N. Anh, P.Y. Chang, R.A. Doong, Sulfur-Doped Graphene Quantum Dot-Based Paper Sensor for Highly Sensitive and Selective Detection of 4-Nitrophenol in Contaminated Water and Wastewater. RSC Advances, 9 (2019) 26588-26597.
    64. C. Ma, Y. Ma, Y. Sun, Y. Lu, E. Tian, J. Lan, J. Li, W. Ye, H. Zhang. Colorimetric Determination of Hg2+ in Environmental Water based on the Hg2+-Stimulated Peroxidase Mimetic Activity of MoS2-Au Composites. Journal of Colloid and Interface Science, 537 (2019) 554-561.
    65. S. Su, C. Zhang, L. Yuwen, J. Chao, X. Zuo, X. Liu, C. Song, C. Fan, L. Wang. Creating SERS Hot Spots on MoS2 Nanosheets with in situ Grown Gold Nanoparticles. ACS Applied Materials & Interfaces, 6 (2014) 18735-18741.
    66. R. Vinoth, I.M. Patil, A. Pandikumar, B.A. Kakade, N.M. Huang, D.D. Dionysios, B. Neppolian. Synergistically Enhanced Electrocatalytic Performance of an N-Doped Graphene Quantum Dot-Decorated 3D MoS2-Graphene Nanohybrid for Oxygen Reduction Reaction. ACS Omega, 1 (2016) 971-980.
    67. S. Moghimian, P. Sangpour. One-step Hydrothermal Synthesis of GQDs-MoS2 Nanocomposite with Enhanced Supercapacitive Performance. Journal of Applied Electrochemistry, 50 (2019) 71-79.
    68. C.P. Veeramalai, F. Li, Y. Liu, Z. Xu, T. Guo, T.W. Kim. Enhanced Field Emission Properties of Molybdenum Disulphide Few Layer Nanosheets Synthesized by Hydrothermal Method. Applied Surface Science, 389 (2016) 1017-1022.
    69. S. Hu, W. Chen, J. Zhou, F. Yin, E. Uchaker, Q. Zhang, G. Cao. Preparation of Carbon Coated MoS2 Flower-Like Nanostructure with Self-Assembled Nanosheets as High-Performance Lithium-ion Battery Anodes. Journal of Materials Chemistry A, 2 (2014) 7862.
    70. A.P. Savintsev, Y.O. Gavasheli, Z.K. Kalazhokov, K.K. Kalazhokov. X-ray Photoelectron Spectroscopy Studies of the Sodium Chloride Surface after Laser Exposure. Journal of Physics: Conference Series, 774 (2016) 012118.
    71. X. Tang, C. Zhang, Y. Wang, Y. Yang, J. Hu. Analysis of Surface and Sub-Surface of Cold-Rolled Al Plate Lubricated with Water- or Oil-based Lubricants. Science China Technological Sciences, 60 (2017) 1407-1414.
    72. A.R. Badireddy, B.R. Korpol, S. Chellam, P.L. Gassman, M.H. Engelhard, A.S. Lea, K.M. Rosso. Spectroscopic Characterization of Extracellular Polymeric Substances from Escherichia coli and Serratia marcescens: Suppression Using Sub-Inhibitory Concentrations of Bismuth Thiols. Biomacromolecules, 9 (2008) 3079-3789
    73. Y.T. Ho, C.H. Ma, T.T. Luong, L.L. Wei, T.C. Yen, W.T. Hsu, W.H. Chang, Y.C. Chu, Y.Y. Tu, K. P. Pande, E. Y. Chang. Layered MoS2 Grown on c-Sapphire by Pulsed Laser Deposition. physica status solidi rapid research letters, 9 (2015) 187-191.
    74. Y. Cai, X. Yang, T. Liang, L. Dai, L. Ma, G. Huang, W. Chen, H. Chen, H. Su, M. Xu. Easy Incorporation of Single-Walled Carbon Nanotubes into Two-Dimensional MoS2 for High-Performance Hydrogen Evolution. Nanotechnology, 25 (2014) 465401.
    75. Y.G. Basabe, G.F. Peixoto, D. Grasseschi, E.C. Romani, F.C. Vicentin, C.E.P. Villegas, A.R. Rocha, D.G. Larrude. Phase Transition and Electronic Structure Investigation of MoS2-rGO Nanocomposite Decorated with AuNPs. Nanotechnology, 30 (2019) 475707.
    76. N.T.N. Anh, R.A. Doong. One-Step Synthesis of Size-Tunable Gold@Sulfur-Doped Graphene Quantum Dot Nanocomposites for Highly Selective and Sensitive Detection of Nanomolar 4-Nitrophenol in Aqueous Solutions with Complex Matrix. ACS Applied Nano Materials, 1 (2018) 2153-2163.
    77. Y. Garcia- Basabe, G.F. Peixoto, D. Grasseschi, E.C. Romani, F.C. Vicentin, C.E. P. Villegas, A.R. Rocha, D.G. Larrude. Phase Transition and Electronic Structure Investigation of MoS2-Reduced Graphene Oxide Nanocomposite Decorated with Au Nanoparticles, Nanotechnology, 30 (2019) 475707.
    78. Y. Shi, J.K. Huang, L. Jin, Y.T. Hsu, S.F. Yu, L.J. Li, H.Y. Yang. Selective Decoration of Au Nanoparticles on Monolayer MoS2 Single Crystals, Scientific Reports, 3 (2013) 1839.
    79. F. Li, J. Li, Z. Cao, X. Lin, X. Li, Y. Fang, X. An, Y. Fu, J. Jin, R. Li. MoS2 Quantum Dot Decorated rGO: A Designed Electrocatalyst with High Active Site Density for the Hydrogen Evolution Reaction, Journal of Materials Chemistry A, 3 (2015) 21772-21778.
    80. C. Wang, J. Jin, Y. Sun, J. Yao, G. Zhao, Y. Liu. In-Situ Synthesis and Ultrasound Enhanced Adsorption Properties of MoS2/Graphene Quantum Dot Nanocomposite. Chemical Engineering Journal, 327 (2017) 774-782.
    81. S. Posysaev, M. Alatalo. Surface Morphology and Sulfur Reduction Pathways of MoS2 Mo Edges of the Monolayer and (100) and (103) Surfaces by Molecular Hydrogen: A DFT Study. ACS Omega, 4 (2019) 4023-4028.
    82. K. Gołasa, M. Grzeszczyk, J. Binder, R. Bożek, A. Wysmołek, A. Babiński. The Disorder-Induced Raman Scattering in Au/MoS2 Heterostructures. AIP Advances, 5 (2015) 077120.
    83. P. Wang, S. Lin, G. Ding, X. Li, Z. Wu, S. Zhang, Z. Xu, S. Xu, Y. Lu, W. Xu, Z. Zheng. Enhanced Monolayer MoS2/InP Heterostructure Solar Cells by Graphene Quantum Dots. Applied Physics Letters, 108 (2016) 163901.
    84. K. Gołasa, M. Grzeszczyk, M. Zinkiewicz, K. Nogajewski, M. Potemski, A. Wysmołek, A. Babinski. Raman Spectroscopy of Shear Modes in a Few-Layer MoS2. Acta Physica Polonica A, 129 (2016) A-132-A-134.
    85. Y. Yao, K. Ao, P. Lv, Q. Wei. MoS2 Coexisting in 1T and 2H Phases Synthesized by Common Hydrothermal Method for Hydrogen Evolution Reaction. Nanomaterials , 9 (2019) 844.
    86. T.N. Kumar, N. Chandrasekaran, K.L. Phani. Structural and Electronic Modification of MoS2 Nanosheets Using S-doped Carbon for Efficient Electrocatalysis of the Hydrogen Evolution Reaction. Chemical communications, 51 (2015) 5052-5055.
    87. H. Zhang, H. Lin, Y. Zheng, Y. Hu, A. MacLennan. Understanding of the Effect of Synthesis Temperature on the Crystallization and Activity of Nano-MoS2 Catalyst. Applied Catalysis B: Environmental, 165 (2015) 537-546.
    88. W.J. Li, E.W. Shi, J.M. Ko, Z.Z. Chen, H. Ogino, T. Fukuda. Hydrothermal Synthesis of MoS2 Nanowires, Journal of Crystal Growth, 250 (2003) 418-422.
    89. Y. Tian, X. Zhao, L. Shen, F. Meng, L. Tang, Y. Deng, Z. Wang. Synthesis of Amorphous MoS2 Nanospheres by Hydrothermal Reaction. Materials Letters, 60 (2006) 527-529.
    90. J.C. Love, L.A. Estrof, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides. Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chemical Reviews, 105 (2005) 1103-1169.
    91. T. Lou, L. Chen, C. Zhang, Q. Kang, H. You, D. Shen, L. Chen. A Simple and Sensitive Colorimetric Method for Detection of Mercury Ions Based on Anti-Aggregation of Gold Nanoparticles. Analytical Methods, 4 (2012) 488.
    92. Vinita, N.R. Nirala, R. Prakash. One Step Synthesis of AuNPs@MoS2 -QDs Composite as a Robust Peroxidase-Mimetic for Instant Unaided Eye Detection of Glucose in Serum, Saliva and Tear. Sensors and Actuators B: Chemical, 263 (2018) 109-119.
    93. R.S. Li, H. Liu, B.B. Chen, H.Z. Zhang, C.Z. Huang, J. Wang. Stable Gold Nanoparticles as a Novel Peroxidase Mimic for Colorimetric Detection of Cysteine. Analytical Methods, 8 (2016) 2494-2501.
    94. P. Borthakur, P.K. Boruah, M.R. Das, S.B. Artemkina, P.A. Poltarak, V.E. Fedorov. Metal Free MoS2 2D Sheets as a Peroxidase Enzyme and Visible-Light-Induced Photocatalyst towards Detection and Reduction of Cr6+ Ions. New Journal of Chemistry, 42 (2018) 16919-16929.
    95. J. Hassanzadeh, A. Khataee. Ultrasensitive Chemiluminescent Biosensor for the Detection of Cholesterol based on Synergetic Peroxidase-Like Activity of MoS2 and Graphene Quantum Dots. Talanta, 178 (2018) 992-1000.
    96. S. Cai, Z. Fu, W. Xiao, Y. Xiong, C. Wang, R. Yang. Zero-Dimensional/Two-Dimensional AuxPd100-x Nanocomposites with Enhanced Nanozyme Catalysis for Sensitive Glucose Detection. ACS Applied Materials & Interfaces, 12 (2020) 11616-11624.
    97. Y. Fang, Y. Zhang, L. Cao, J. Yang, M. Hu, Z. Pang, J. He. Portable Hg2+ Nanosensor with ppt Level Sensitivity Using Nanozyme as the Recognition Unit, Enrichment Carrier, and Signal Amplifier. ACS Applied Materials & Interfaces, 12 (2020) 11761-11768.
    98. J. Zhang, W. Zheng, X. Jiang. Ag+-Gated Surface Chemistry of Gold Nanoparticles and Colorimetric Detection of Acetylcholinesterase. Small, 14 (2018) 1801680.
    99. J. Liu, L. Meng, Z. Fei, P.J. Dyson, X. Jing, X. Liu. MnO2 Nanosheets as an Artificial Enzyme to Mimic Oxidase for Rapid and Sensitive Detection of Glutathione. Biosensors and Bioelectronics, 90 (2017) 69-74.
    100. M. Drozd, M. Pietrzak, P.G. Parzuchowski, E. Malinowska. Pitfalls and Capabilities of Various Hydrogen Donors in Evaluation of Peroxidase-Like Activity of Gold Nanoparticles. Analytical and Bioanalytical Chemistry, 408 (2016) 8505-8513.
    101. R.N. Jones, The Ultraviolet Absorption Spectra of Aromatic Hydrocarbons. Chemical Reviews, 32 (1943) 1-46.
    102. S. Su, Q. Hao, Z. Yan, R. Dong, R. Yang, D. Zhu, J. Chao, Y. Zhou, L. Wang, A Molybdenum Disulfide@Methylene Blue Nanohybrid for Electrochemical Determination of MicroRNA-21, Dopamine and Uric acid. Microchimca Acta, 186 (2019) 607
    103. L. Yuwen, F. Xu, B. Xue, Z. Luo, Q. Zhang, B. Bao, S. Su, L. Weng, W. Huang, L. Wang. General Synthesis of Noble Metal (Au, Ag, Pd, Pt) Nanocrystal Modified MoS2 Nanosheets and the Enhanced Catalytic Activity of Pd-MoS2 for Methanol Oxidation. Nanoscale, 6 (2014) 5762- 5769.
    104. K. Zhao, W. Gu, S. Zheng, C. Zhang, Y. Xian. SDS-MoS2 Nanoparticles as Highly-Efficient Peroxidase Mimetics for Colorimetric Detection of H2O2 and Glucose, Talanta, 141 (2015) 47-52.

    QR CODE