研究生: |
謝沛倫 Hsieh, Pei-Lun. |
---|---|
論文名稱: |
晶面效應影響鍺、砷化鎵基板和鈦酸鍶奈米顆粒電性以及鈦酸鍶奈米顆粒光學與光催化活性研究 Facet-Dependent Electrical Conductivity Behaviors of Ge, GaAs Wafers and SrTiO3 Nanocrystals as well as Optical and Photocatalytic Properties of SrTiO3 Nanocrystals |
指導教授: |
陳力俊
Chen, Lih-Juann 黃暄益 Huang, Hsuan-Yi |
口試委員: |
鄭晃忠
Cheng, Huang-Chung 吳文偉 Wu, Wen-Wei 呂明諺 Lu, Ming-Yen |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 105 |
中文關鍵詞: | 鈦酸鍶 、鍺 、砷化鎵 、晶面 、光催化 、產氫 |
外文關鍵詞: | SrTiO3, Ge, GaAs, Facet, Photocatalytic, Hydrogen |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
晶面效應在電性、光催化活性和光性質上具有相當顯著的影響,本研究首先在鍺和砷化鎵基板上進行了晶面效應的電性量測實驗。鍺基板的{111}和{112}面與砷化鎵的{111}面分別是具有較好的導電性的晶面。而在同時接觸量測較易導電和較不易導電的晶面時,則得到一不對稱具有整流現象的曲線。使用調整過的能帶結構圖呈現,可說明晶面效應在電性上的影響。
同時製造各式的可變形狀奈米顆粒已成為材料工程中相當重要且引人注目的目標之一。本研究成功的在3小時內從水相溶液中以攝氏70度的低溫析出合成擁有正立方體鈣鈦礦結構的鈦酸鍶奈米立方體顆粒,並可調控約160-290奈米顆粒大小。當溫度提高至攝氏200度並置換溶劑中的乙醇為其他醇類如乙二醇或正己醇時,分別可以合成出鈍邊立方體和{100}面鈍角菱形十二面體。
透過X射線繞射儀和穿透式電子顯微鏡的觀察並以Rietveld精算分析的輔佐計算下,發現了形狀的改變也造成了晶格常數的改變。而在紫外-可見光分析光譜上可發現,立方體形狀的鈦酸鍶顆粒展示了能帶大小會隨顆粒大小而變化,且立方體的吸收峰相較其他有{110}面的顆粒會有更多藍位移的現象。
{100}面鈍角菱形十二面體相較起立方體也在亞甲藍液的染料降解和光催化的水分解產氫兩種實驗上展現出了較高的效率。使用修飾過的能帶圖可以來解釋所觀察到的鈦酸鍶{100}和{110}表面的能帶彎曲的現象,並提出藉由控制表面晶面可成為提升光催化效率的一種有效策略。最後我們進一步利用表面電漿共振效應,合成金與鈦酸鍶的異質結構奈米顆粒來增進光催化產氫效率。在紫外光區段下,在含有乙二醇作為犧牲劑的水溶液中得到了約有25%的效率增長。
另一方面,使用腔體架設四點探針座的掃描式電子顯微鏡,藉由控制自製的鎢探針來接觸奈米顆粒的每個表面來研究觀察鈦酸鍶奈米顆粒的電性質。完美的立方體形狀鈦酸鍶其{100}面表現絕緣體性質,然而鈍角菱形十二面體的{110}面卻表現出相當好的導電性。且當同時接觸量測此鈍角菱形十二面體的{100}和{110}面時可得到一不對稱的I-V曲線圖,顯現出具有電流整流的現象,可以用一調整過的能帶結構圖來說明晶面效應在電性上的影響。
Facet-dependent properties of semiconductors have been widely investigated in recent years. In the present research, electrical conductivity measurements were performed on intrinsic Ge and GaAs wafers. The {111} and {112} facets of Ge are highly conductive, while the {111} facet of GaAs also possess great conductivity. Current-rectifying asymmetric I‒V curves were also recorded when contacting a conductive facet and a less conductive facet simultaneously for Ge and GaAs wafers. A modified band diagram is presented to illustrate the concept of facet-dependent electrical conductivity properties.
Formation of semiconductor nanocrystals with tunable shapes is often synthetically challenging, but the particles are highly useful for facet-dependent electrical conductivity, photocatalytic activity, and optical property characterizations to advance our knowledge of semiconductor materials. In this dissertation, SrTiO3, a cubic perovskite oxide, cubes with tunable sizes of 160−290 nm have been synthesized in an aqueous ethanol solution at just 70 ºC for 3 h. Raising the temperature to 200 ºC, and replacing ethanol with various alcohols such as hexanol and ethylene glycol, resulted in the formation of edge-truncated cubes and {100}-truncated rhombic dodecahedra, respectively. X-ray diffraction and transmission electron microscopy characterization, supported by Rietveld refinement analysis, has revealed shape-dependent tuning in the SrTiO3 lattice parameters. The cubes display slight size-related optical band shifts in the UV-vis spectrum, and they show clearly more blue-shifted light absorption than the other particles exposing significant {110} faces.
The {100}-truncated rhombic dodecahedra also show a higher efficiency than cubes at both photodegradation of methylene blue and photocatalyzed hydrogen evolution from water in the presence of methanol. An adjusted band diagram was provided to explain the surface band bending for the {100} and {110} faces of SrTiO3, suggesting surface facet control as a strategy for enhancing photocatalytic activity. Furthermore, we have introduced localized surface plasmon resonance (LSPR) to enhance the photocatalyzed hydrogen evolution efficiency by making Au/SrTiO3 hybrid nanoparticles. Under ultra-violet light, significant increase in hydrogen production rate from 25% ethylene glycol solution was recorded.
To investigate electrical conductivity properties of these shaped-controlled SrTiO3 crystals, we have employed a four-point probe device in a scanning electron microscope chamber and operated tungsten probes to contact the crystal facets. {100} faces of a perfect SrTiO3 cube are insulating, but the {110} faces of a SrTiO3 truncated rhombic dodecahedron are considerably more conductive. And a current-rectifying asymmetric I‒V curves were recorded with electrodes contacting the {100} and {110} faces of a SrTiO3 {100}-truncated rhombic dodecahedron. A modified band diagram is presented to understand the observed facet-dependent electrical conductivity properties.
1. Huang, M. H.; Chiu, C.-Y., Achieving Polyhedral Nanocrystal Growth with Systematic Ahape Control. J. Mater. Chem. A 2013, 1, 8081‒8092.
2. Huang, M. H.; Rej, S.; Hsu, S. C., Facet-Dependent Properties of Polyhedral Nanocrystals. Chem. Commun. 2014, 50, 1634‒1644.
3. Bai, S.; Wang, L.; Li, Z.; Xiong, Y., Facet-Engineered Surface and Interface Design of Photocatalytic Materials. Adv. Sci. 2017, 4, 1600216.
4. Shang, Y.; Guo, L., Facet-Controlled Synthetic Strategy of Cu2O-Based Crystals for Catalysis and Sensing. Adv. Sci. 2015, 2, 1500140.
5. Huang, M. H.; Rej, S.; Chiu, C.-Y., Facet-Dependent Optical Properties Revealed through Investigation of Polyhedral Au-Cu2O and Bimetallic Core-Shell Nanocrystals. Small 2015, 11, 2716‒2726.
6. Ho, J.-Y.; Huang, M. H., Synthesis of Submicrometer-Sized Cu2O Crystals with Morphological Evolution from Cubic to Hexapod Structures and Their Comparative Photocatalytic Activity. J. Phys. Chem. C 2009, 113, 14159‒14164.
7. Huang, W.-C.; Lyu, L.-M.; Yang, Y.-C.; Huang, M. H., Synthesis of Cu2O Nanocrystals From Cubic to Rhombic Dodecahedral Structures and Their Comparative Photocatalytic Activity. J. Am. Chem. Soc. 2012, 134, 1261‒1267.
8. Chanda, K.; Rej, S.; Huang, M. H., Facet-Dependent Catalytic Activity of Cu2O Nanocrystals in the One-Pot Synthesis of 1,2,3-Triazoles by Multicomponent Click reactions. Chem.‒Eur. J. 2013, 19, 16036‒16043.
9. Chanda, K.; Rej, S.; Huang, M. H., Investigation of Facet Effects on the Catalytic Activity of Cu2O Nanocrystals for Efficient Regioselective Synthesis of 3,5-Disubstituted Isoxazoles. Nanoscale 2013, 5, 12494‒12501.
10. Kuo, C.-H.; Yang, Y.-C.; Gwo, S.; Huang, M. H., Facet-Dependent and Au Nanocrystal-Enhanced Electrical and Photocatalytic Properties of Au-Cu2O Core-shell Heterostructures. J. Am. Chem. Soc. 2011, 133, 1052‒1057.
11. Tan, C.-S.; Hsu, S.-C.; Ke, W.-H.; Chen, L.-J.; Huang, M. H., Facet-Dependent Electrical Conductivity Properties of Cu2O Crystals. Nano Lett. 2015, 15, 2155‒2160.
12. Yang, Y.-C.; Wang, H.-J.; Whang, J.; Huang, J.-S.; Lyu, L.-M.; Lin, P.-H.; Gwo, S.; Huang, M. H., Facet-Dependent Optical Properties of Polyhedral Au-Cu2O Core-Shell Nanocrystals. Nanoscale 2014, 6, 4316‒4324.
13. Ke, W. H.; Hsia, C. F.; Chen, Y. J.; Huang, M. H., Synthesis of Ultrasmall Cu2O Nanocubes and Octahedra with Tunable Sizes for Facet-Dependent Optical Property Examination. Small 2016, 12, 3530‒4.
14. Li, C.; Koenigsmann, C.; Ding, W.; Rudshteyn, B.; Yang, K. R.; Regan, K. P.; Konezny, S. J.; Batista, V. S.; Brudvig, G. W.; Schmuttenmaer, C. A.; Kim, J. H., Facet-Dependent Photoelectrochemical Performance of TiO2 Nanostructures: An Experimental and Computational Study. J Am. Chem. Soc. 2015, 137, 1520‒9.
15. Li, Y.; Chen, S.; He, H.; Zhang, Y.; Wang, C., Tuning Activities of K1.9Na0.1Ta2O6.2H2O Nanocrystals in Photocatalysis by Controlling Exposed Facets. ACS Appl Mater Interfaces 2013, 5, 10260‒5.
16. Lei, W.; Zhang, T.; Gu, L.; Liu, P.; Rodriguez, J. A.; Liu, G.; Liu, M., Surface-Structure Sensitivity of CeO2 Nanocrystals in Photocatalysis and Enhancing the Reactivity with Nanogold. ACS Catalysis 2015, 5, 4385‒4393.
17. Liu, W.-T.; Wu, B.-H.; Lai, Y.-T.; Tai, N.-H.; Perng, T.-P.; Chen, L.-J., Enhancement of Water Splitting by Controlling the Amount of Vacancies with Varying Vacuum Level in the Synthesis System of SnO2-X/In2O3-Y Heterostructure as Photocatalyst. Nano Energy 2018, 47, 18‒25.
18. Kuo, C.-H.; Huang, M. H., Morphologically Controlled Synthesis of Cu2O Nanocrystals and Their Properties. Nano Today 2010, 5, 106‒116.
19. Yuan, G.-Z.; Hsia, C.-F.; Lin, Z.-W.; Chiang, C.; Chiang, Y.-W.; Huang, M. H., Highly Facet-Dependent Photocatalytic Properties of Cu2O Crystals Established through the Formation of Au-Decorated Cu2O Heterostructures. Chemistry 2016, 22, 12548‒56.
20. Wu, S.-C.; Tan, C.-S.; Huang, M. H., Strong Facet Effects on Interfacial Charge Transfer Revealed through the Examination of Photocatalytic Activities of Various Cu2O-ZnO Heterostructures. Advanced Functional Materials 2017, 27, 1604635.
21. Liu, L.; Yang, W.; Sun, W.; Li, Q.; Shang, J. K., Creation of Cu2O@TiO2 Composite Photocatalysts with p-n Heterojunctions Formed on Exposed Cu2O Facets, Their Energy Band Alignment Study, and Their Enhanced Photocatalytic Activity under Illumination with Visible Light. ACS Appl Mater Interfaces 2015, 7, 1465‒76.
22. Kandjani, A. E.; Sabri, Y. M.; Periasamy, S. R.; Zohora, N.; Amin, M. H.; Nafady, A.; Bhargava, S. K., Controlling Core/Shell Formation of Nanocubic p-Cu2O/n-ZnO toward Enhanced Photocatalytic Performance. Langmuir 2015, 31, 10922‒10930.
23. Pu, Y.-C.; Chou, H.-Y.; Kuo, W.-S.; Wei, K.-H.; Hsu, Y.-J., Interfacial Charge Carrier Dynamics of Cuprous Oxide-Reduced Graphene Oxide (Cu2O-rGO) Nanoheterostructures and Their Related Visible-Light-Driven Photocatalysis. Applied Catalysis B: Environmental 2017, 204, 21‒32.
24. Huang, J.-Y.; Madasu, M.; Huang, M. H., Modified Semiconductor Band Diagrams Constructed from Optical Characterization of Size-Tunable Cu2O Cubes, Octahedra, and Rhombic Dodecahedra. The Journal of Physical Chemistry C 2018, 122, 13027‒13033.
25. Zhang, G.; Liu, G.; Wang, L.; Irvine, J. T., Inorganic Perovskite Photocatalysts for Solar Energy Utilization. Chem Soc Rev 2016, 45, 5951‒5984.
26. Pena, M. A.; Fierro, J. L., Chemical Structures and Performance of Perovskite Oxides. Chem Rev 2001, 101, 1981‒2017.
27. Phule, P. P.; Risbud, S. H., Low-Temperature Synthesis and Processing of Electronic Materials in the BaO-TiO2 System. Journal of Materials Science 1990, 25, 1169‒1183.
28. Weaver, H. E., Dielectric Properties of Single Crystals of SrTiO3 at Low Temperatures. Journal of Physics and Chemistry of Solids 1959, 11, 274‒277.
29. Suchanek, W. L.; Riman, R. E., Hydrothermal Synthesis of Advanced Ceramic Powders. Advances in Science and Technology 2006, 45, 184‒193.
30. Wang, T. X.; Chen, W. W., Solid Phase Preparation of Submicron-Sized SrTiO3 Crystallites from SrO2 Nanoparticles and TiO2 Powders. Materials Letters 2008, 62, 2865‒2867.
31. da Silva, L. F.; Maia, L. J. Q.; Bernardi, M. I. B.; Andrés, J. A.; Mastelaro, V. R., An Improved Method for Preparation of SrTiO3 Nanoparticles. Materials Chemistry and Physics 2011, 125, 168‒173.
32. Pontes, F. M.; Lee, E. J. H.; Leite, E. R.; Longo, E.; Varela, J. A., High Dielectric Constant of SrTiO3 Thin Films. Journal of Materials Science 2000, 35, 4783‒4787.
33. Fuchs, D.; Schäfer, R.; Sleem, A.; Schneider, R.; Thelen, R.; von Löhneysen, H., Two-Dimensional Superconductivity between SrTiO3 and Amorphous Al2O3. Applied Physics Letters 2014, 105, 092602.
34. Lukosius, M.; Wenger, C.; Blomberg, T.; Ruhl, G., Properties of Stacked SrTiO3/Al2O3 Metal–Insulator–Metal Capacitors. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 2013, 31, 01a102.
35. da Silva, L. F.; Lopes, O. F.; de Mendonca, V. R.; Carvalho, K. T.; Longo, E.; Ribeiro, C.; Mastelaro, V. R., An Understanding of the Photocatalytic Properties and Pollutant Degradation Mechanism of SrTiO3 Nanoparticles. Photochem Photobiol 2016, 92, 371‒8.
36. Liu, Y.; Xie, L.; Li, Y.; Yang, R.; Qu, J.; Li, Y.; Li, X., Synthesis and High Photocatalytic Hydrogen Production of SrTiO3 Nanoparticles from Water Splitting under UV Irradiation. Journal of Power Sources 2008, 183, 701‒707.
37. van Benthem, K.; Elsässer, C.; French, R. H., Bulk Electronic Structure of SrTiO3: Experiment and Theory. Journal of Applied Physics 2001, 90, 6156‒6164.
38. Kimijima, T.; Kanie, K.; Nakaya, M.; Muramatsu, A., Solvothermal Synthesis of SrTiO3 Nanoparticles Precisely Controlled in Surface Crystal Planes and Their Photocatalytic Activity. Applied Catalysis B: Environmental 2014, 144, 462‒467.
39. Pellegrino, F.; Sordello, F.; Mino, L.; Prozzi, M.; Mansfeld, U.; Hodoroaba, V. D.; Minero, C., Polyethylene Glycol as Shape and Size Controller for the Hydrothermal Synthesis of SrTiO3 Cubes and Polyhedra. Nanomaterials 2020, 10.
40. Dong, L.; Shi, H.; Cheng, K.; Wang, Q.; Weng, W.; Han, W., Shape-Controlled Growth of SrTiO3 Polyhedral Submicro/Nanocrystals. Nano Research 2014, 7, 1311‒1318.
41. Shao, K.; Wang, Y.; Iqbal, M.; Lin, L.; Wang, K.; Zhang, X.; He, M.; He, T., Modification of Ag Nanoparticles on the Surface of SrTiO3 Particles and Resultant Influence on Photoreduction of CO2. Appl. Surf. Sci. 2018, 434, 717‒724.
42. Zhou, X.; Shi, J.; Li, C., Effect of Metal Doping on Electronic Structure and Visible Light Absorption of SrTiO3 and NaTaO3 (Metal = Mn, Fe, and Co). J. Phy. Chem. C 2011, 115, 8305‒8311.
43. Huang, M. H.; Naresh, G.; Chen, H. S., Facet-Dependent Electrical, Photocatalytic, and Optical Properties of Semiconductor Crystals and Their Implications for Applications. ACS Appl. Mater. Interfaces 2018, 10, 4‒15.
44. Chu, C.-Y.; Huang, M. H., Facet-Dependent Photocatalytic Properties of Cu2O Crystals Probed by Using Electron, Hole and Radical Scavengers. J. Mater. Chem. A 2017, 5, 15116‒15123.
45. Chen, Y.-J.; Chiang, Y.-W.; Huang, M. H., Synthesis of Diverse Ag2O Crystals and Their Facet-Dependent Photocatalytic Activity Examination. ACS Appl. Mater. Interfaces 2016, 8, 19672‒9.
46. Bi, Y.; Ouyang, S.; Umezawa, N.; Cao, J.; Ye, J., Facet Effect of Single-Crystalline Ag3PO4 Sub-Microcrystals on Photocatalytic Properties. J Am Chem Soc 2011, 133, 6490‒2.
47. Hsieh, M.-S.; Su, H.-J.; Hsieh, P.-L.; Chiang, Y.-W.; Huang, M. H., Synthesis of Ag3PO4 Crystals with Tunable Shapes for Facet-Dependent Optical Property, Photocatalytic Activity, and Electrical Conductivity Examinations. ACS Appl. Mater. Interfaces 2017, 9, 39086‒39093.
48. Huang, M. H., Facet-Dependent Optical Properties of Semiconductor Nanocrystals. Small 2019, 15, 1804726.
49. Tan, C.-S.; Huang, M. H., Metal-like Band Structures of Ultrathin Si {111} and {112} Surface Layers Revealed through Density Functional Theory Calculations. Chemistry 2017, 23, 11866‒11871.
50. Tan, C.-S.; Hsieh, P.-L.; Chen, L.-J.; Huang, M. H., Silicon Wafers with Facet-Dependent Electrical Conductivity Properties. Angew. Chem. Int. Ed. 2017, 56, 15339‒15343.
51. Tan, C.-S.; Huang, M. H., Density Functional Theory Calculations Revealing Metal-like Band Structures for Ultrathin Germanium (111) and (211) Surface Layers. Chem. Asian J. 2018, 13, 1972‒1976.
52. Hsieh, P.-L.; Lee, A-T.; Chen, L.-J.; Huang, M. H., Germanium Wafers Possessing Facet-Dependent Electrical Conductivity Properties. Angew. Chem. Int. Ed. 2018, 57, 16162‒16165.
53. Marschall, R., Semiconductor Composites: Strategies for Enhancing Charge Carrier Separation to Improve Photocatalytic Activity. Adv. Funct. Mater. 2014, 24, 2421‒2440.
54. Foo, G. S.; Hood, Z. D.; Wu, Z., Shape Effect Undermined by Surface Reconstruction: Ethanol Dehydrogenation over Shape-Controlled SrTiO3 Nanocrystals. ACS Catal. 2017, 8, 555‒565.
55. Dong, L.; Luo, Q.; Cheng, K.; Shi, H.; Wang, Q.; Weng, W.; Han, W. Q., Facet-Specific Assembly of Proteins on SrTiO3 Polyhedral Nanocrystals. Sci. Rep. 2014, 4, 5084.
56. Dong, L.; Cheng, K.; Weng, W.; Han, W., Effect of Mineralization Agents on the Surface Structure and Dielectric Properties of SrTiO3 Nanocrystals. CrystEngComm 2014, 16 , 10750‒10753.
57. Cao, J.; Huang, X.; Liu, Y.; Wu, J.; Ji, Y., Enhanced Phocatalytic Ativity of SrTiO3 Photocatalyst by Topotactic Preparation. Materials Research Express 2016, 3, 115903.
58. Wang, Q.; Hisatomi, T.; Ma, S. S. K.; Li, Y.; Domen, K., Core/Shell Structured La- and Rh-Codoped SrTiO3 as a Hydrogen Evolution Photocatalyst in Z-Scheme Overall Water Splitting under Visible Light Irradiation. Chemistry of Materials 2014, 26, 4144‒4150.
59. Iwashina, K.; Kudo, A., Rh-Doped SrTiO3 Photocatalyst Electrode Showing Cathodic Photocurrent for Water Splitting under Visible-Light Irradiation. J. Am. Chem. Soc. 2011, 133, 13272‒5.
60. Melo, M. A., Jr.; Wu, Z.; Nail, B. A.; De Denko, A. T.; Nogueira, A. F.; Osterloh, F. E., Surface Photovoltage Measurements on a Particle Tandem Photocatalyst for Overall Water Splitting. Nano Lett. 2018, 18, 805‒810.
61. Kuang, Q.; Yang, S., Template Synthesis of Single-Crystal-Like Porous SrTiO3 Nanocube Assemblies and Their Enhanced Photocatalytic Hydrogen Evolution. ACS Appl. Mater. Interfaces 2013, 5, 3683‒90.
62. Zhang, P.; Ochi, T.; Fujitsuka, M.; Kobori, Y.; Majima, T.; Tachikawa, T., Topotactic Epitaxy of SrTiO3 Mesocrystal Superstructures with Anisotropic Construction for Efficient Overall Water Splitting. Angew. Chem. Int. Ed. 2017, 56, 5299‒5303.
63. Li, J.; Bai, H.; Yi, W.; Liu, J.; Li, Y.; Zhang, Q.; Yang, H.; Xi, G., Synthesis and Facet-Dependent Photocatalytic Activity of Strontium Titanate Polyhedron Nanocrystals. Nano Research 2016, 9, 1523‒1531.
64. Cortright, R. D.; Davda, R. R.; Dumesic, J. A., Hydrogen from Catalytic Reforming of Biomass-Derived Hydrocarbons in Liquid Water. Nature 2002, 418, 964‒7.
65. Yang, G.; Yan, W.; Wang, J.; Zhang, Q.; Yang, H., Fabrication and Photocatalytic Activities of SrTiO3 Nanofibers by Sol–Gel Assisted Electrospinning. Journal of Sol-Gel Science and Technology 2014, 71, 159‒167.
66. Zhou, M.; Chen, J.; Zhang, Y.; Jiang, M.; Xu, S.; Liang, Q.; Li, Z., Shape-Controlled Synthesis of Golf-Like, Star-Like, Urchin-Like and Flower-Like SrTiO3 for Highly Efficient Photocatalytic Degradation and H2 Production. Journal of Alloys and Compounds 2020, 817.
67. Wu, B.-H.; Liu, W.-T.; Chen, T.-Y.; Perng, T.-P.; Huang, J.-H.; Chen, L.-J., Plasmon-Enhanced Photocatalytic Hydrogen Production on Au/TiO2 Hybrid Nanocrystal Arrays. Nano Energy 2016, 27, 412‒419.
68. Chen, Y.-C.; Huang, Y.-S.; Huang, H.; Su, P.-J.; Perng, T.-P.; Chen, L.-J., Photocatalytic Enhancement of Hydrogen Production in Water Splitting under Simulated Solar Light by Band Gap Engineering and Localized Surface Plasmon Resonance of ZnxCd1-xS Nanowires Decorated by Au Nanoparticles. Nano Energy 2020, 67, 104225.
69. Huang, Y.-S.; Hsiao, Y.-C.; Tzeng, S.-H.; Wu, Y.-H.; Perng, T.-P.; Lu, M.-Y.; Chueh, Y.-L.; Chen, L.-J., Vastly Improved Solar-Light Induced Water Splitting Catalyzed by Few-Layer MoS2 on Au Nanoparticles Utilizing Localized Surface Plasmon Resonance. Nano Energy 2020, 77, 105267.
70. Rodríguez-Carvajal, J., Recent Advances in Magnetic Structure Determination by Neutron Powder Diffraction. Physica B: Condensed Matter 1993, 192, 55‒69.
71. Calderone, V. R.; Testino, A.; Buscaglia, M. T.; Bassoli, M.; Bottino, C.; Viviani, M.; Buscaglia, V.; Nanni, P., Size and Shape Control of SrTiO3 Particles Grown by Epitaxial Self-Assembly. Chemistry of Materials 2006, 18, 1627‒1633.
72. Wang, D.; Ye, J.; Kako, T.; Kimura, T., Photophysical and Photocatalytic Properties of SrTiO3 Doped with Cr Cations on Different Sites. J Phys Chem B 2006, 110, 15824‒30.
73. Sotnikov, A. V.; Smirnova, E. P.; Schmidt, H.; Weihnacht, M.; Lemanov, V. V., Polar State in Li-Doped SrTiO3. Ferroelectrics 2010, 405 (1), 13‒19.
74. Li, Y.; Qi, Z.; Liu, M.; Wang, Y.; Cheng, X.; Zhang, G.; Sheng, L., Photoluminescence of Monolayer MoS2 on LaAlO3 and SrTiO3 Substrates. Nanoscale 2014, 6, 15248‒54.
75. Liu, J.; Liu, G.; Li, M.; Shen, W.; Liu, Z.; Wang, J.; Zhao, J.; Jiang, L.; Song, Y., Enhancement of Photochemical Hydrogen Evolution over Pt-Loaded Hierarchical Titania Photonic Crystal. Energy & Environmental Science 2010, 3, 1503‒1506.
76. Guzman, F.; Chuang, S. S. C.; Yang, C., Role of Methanol Sacrificing Reagent in the Photocatalytic Evolution of Hydrogen. Industrial & Engineering Chemistry Research 2013, 52, 61‒65.
77. Vasquez, R. P., SrTiO3 by XPS. Surface Science Spectra 1992, 1 (1), 129‒135.
78. Chen, W.-T.; Dong, Y.; Yadav, P.; Aughterson, R. D.; Sun-Waterhouse, D.; Waterhouse, G. I. N., Effect of Alcohol Sacrificial Agent on the Performance of Cu/TiO2 Photocatalysts for UV-Driven Hydrogen Production. Applied Catalysis A: General 2020, 602, 117703.
79. Chen, W.-T.; Chan, A.; Al-Azri, Z. H. N.; Dosado, A. G.; Nadeem, M. A.; Sun-Waterhouse, D.; Idriss, H.; Waterhouse, G. I. N., Effect of TiO2 Polymorph and Alcohol Sacrificial Agent on the Activity of Au/TiO2 Photocatalysts for H2 Production in Alcohol–Water Mixtures. Journal of Catalysis 2015, 329, 499‒513.
80. Tan, C.-S.; Chen, Y.-J.; Hsia, C.-F.; Huang, M. H., Facet-Dependent Electrical Conductivity Properties of Silver Oxide Crystals. Chem. Asian J. 2017, 12, 293‒297.
81. Liu, G.; Yin, L. C.; Pan, J.; Li, F.; Wen, L.; Zhen, C.; Cheng, H. M., Greatly Enhanced Electronic Conduction and Lithium Storage of Faceted TiO2 Crystals Supported on Metallic Substrates by Tuning Crystallographic Orientation of TiO2. Adv Mater 2015, 27, 3507‒12.
82. Kim, C. W.; Yeob, S. J.; Cheng, H.-M.; Kang, Y. S., A Selectively Exposed Crystal Facet-Engineered TiO2 Thin Film Photoanode for the Higher Performance of the Photoelectrochemical Water Splitting Reaction. Energy & Environmental Science 2015, 8, 3646‒3653.
83. Tan, C.-S.; Chen, H.-S.; Chiu, C.-Y.; Wu, S.-C.; Chen, L.-J.; Huang, M. H., Facet-Dependent Electrical Conductivity Properties of PbS Nanocrystals. Chemistry of Materials 2016, 28, 1574‒1580.
84. Hsieh, P.-L.; Wu, S.-H.; Liang, T.-Y.; Chen, L.-J.; Huang, M. H., GaAs Wafers Possessing Facet-Dependent Electrical Conductivity Properties. Journal of Materials Chemistry C 2020, 8, 5456‒5460.
85. Tan, C. S.; Huang, M. H., Density Functional Theory Calculations Revealing Metal-like Band Structures and Work Function Variation for Ultrathin Gallium Arsenide (111) Surface Layers. Chem. Asian J. 2019, 14, 2316‒2321.
86. Tan, C.-S.; Zhao, Y.; Guo, R.-H.; Chuang, W.-T.; Chen, L.-J.; Huang, M. H., Facet-Dependent Surface Trap States and Carrier Lifetimes of Silicon. Nano Lett. 2020, 20, 1952‒1958.
87. Tan, C.-S.; Lu, M.-Y.; Peng, W.-H.; Chen, L.-J.; Huang, M. H., Germanium Possessing Facet-Specific Trap States and Carrier Lifetimes. J. Phys. Chem. C 2020, 124, 13304‒13309.
88. Tan, C.-S.; Chen, L.-J.; Huang, M. H., Large Facet-Specific Built-in Potential Differences Affecting Trap State Densities and Carrier Lifetimes of GaAs Wafers. J. Phys. Chem. C 2020, 124, 21577‒21582.
89. Huang, M. H.; Madasu, M., Facet-Dependent and Interfacial Plane-Related Photocatalytic Behaviors of Semiconductor Nanocrystals and Heterostructures. Nano Today 2019, 28, 100768.
90. Hsieh, P.-L.; Naresh, G.; Huang, Y.-S.; Tsao, C.-W.; Hsu, Y.-J.; Chen, L.-J.; Huang, M. H., Shape-Tunable SrTiO3 Crystals Revealing Facet-Dependent Optical and Photocatalytic Properties. J. Phys. Chem. C 2019, 123 , 13664‒13671.
91. Sun, S.; Song, X.; Sun, Y.; Deng, D.; Yang, Z., The Crystal-Facet-Dependent Effect of Polyhedral Cu2O Microcrystals on Photocatalytic Activity. Catal. Sci. Technol. 2012, 2, 925‒930.
92. Vogel, Y. B.; Zhang, J.; Darwish, N.; Ciampi, S., Switching of Current Rectification Ratios within a Single Nanocrystal by Facet-Resolved Electrical Wiring. ACS Nano 2018, 12, 8071‒8080.
93. Thoka, S.; Lee, A. T.; Huang, M. H., Scalable Synthesis of Size-Tunable Small Cu2O Nanocubes and Octahedra for Facet-Dependent Optical Characterization and Pseudomorphic Conversion to Cu Nanocrystals. ACS Sustainable Chem. Eng. 2019, 7, 10467‒10476.
94. Nakayama, K.; Tanabe, K.; Atwater, H. A., Plasmonic Nanoparticle Enhanced Light Absorption in GaAs Solar Cells. Appl. Phys. Lett. 2008, 93, 121904.
95. Leem, J. W.; Su Yu, J.; Jun, D. H.; Heo, J.; Park, W. K., Efficiency Improvement of III–V GaAs Solar Cells Using Biomimetic TiO2 Subwavelength Structures With Wide-Angle and Broadband Antireflection Properties. Solar Energy Materials and Solar Cells 2014, 127, 43‒49.
96. Lee, S. M.; Kwong, A.; Jung, D.; Faucher, J.; Biswas, R.; Shen, L.; Kang, D.; Lee, M. L.; Yoon, J., High Performance Ultrathin GaAs Solar Cells Enabled with Heterogeneously Integrated Dielectric Periodic Nanostructures. ACS Nano 2015, 9, 10356‒65.
97. Vogel, Y. B.; Gonçales, V. R.; Gooding, J. J.; Ciampi, S., Electrochemical Microscopy Based on Spatial Light Modulators: A Projection System to Spatially Address Electrochemical Reactions at Semiconductors. Journal of The Electrochemical Society 2018, 165, H3085‒H3092.
98. Sulaeman, U.; Yin, S.; Sato, T., Solvothermal Synthesis and Photocatalytic Properties of Chromium-Doped SrTiO3 Nanoparticles. Applied Catalysis B: Environmental 2011, 105, 206‒210.
99. Reiner, J. W.; Kolpak, A. M.; Segal, Y.; Garrity, K. F.; Ismail‐Beigi, S.; Ahn, C. H.; Walker, F., Crystalline Oxides on Silicon. J. Adv. Mater. 2010, 22, 2919‒2938.
100. Priolo, F.; Gregorkiewicz, T.; Galli, M.; Krauss, T. F., Silicon Nanostructures for Photonics and Photovoltaics, Nat. Nanotechnol. 2014, 9, 19‒32.
101. Han, J.; Dai, F.; Liu, Y.; Zhao, R.; Wang, L.; Feng, S., Synthesis of CdSe/SrTiO3 Nanocomposites with Enhanced Photocatalytic Hydrogen Production Activity. Appl. Surf. Sci. 2019, 467, 1033‒1039.
102. Konta, R.; Ishii, T.; Kato, H.; Kudo, A., Photocatalytic Activities of Noble Metal Ion Doped SrTiO3 under Visible Light Irradiation. J. Phys. Chem. B 2004, 108, 8992–8995.
103. Yu, K.; Zhang, C.; Chang, Y.; Feng, Y.; Yang, Z.; Yang T.; Lou, L.-L.; Liu, S., Novel Three-Dimensionally Ordered Macroporous SrTiO3 Photocatalysts with Remarkably Enhanced Hydrogen Production Performance. Appl. Catal., B 2017, 200, 514–520.
104. Saadetnejad, D.; Yıldırım, R., Photocatalytic Hydrogen Production by Water Splitting over Au/Al-SrTiO3. Int. J. Hydrogen Energy 2018, 43, 1116-1122.
105. He, G.-L.; Zhong, Y.-H.; Chen, M.-J.; Li, X.;Fang, Y.-P.; Xu, Y.-X., One-Pot Hydrothermal Synthesis of SrTiO3-Reduced Graphene Oxide Composites with Enhanced Photocatalytic Activity for Hydrogen Production. J. Mol. Catal. A: Chem. 2016, 423, 70–76.
106. Wang, B.; Shen, S.; Guo, L., Surface Reconstruction of Facet-Functionalized SrTiO3 Nanocrystals for Photocatalytic Hydrogen Evolution. Chem.Cat. Chem. 2016, 8, 798–804.