簡易檢索 / 詳目顯示

研究生: 莊夢凡
Chaung, Meng Fan
論文名稱: SUMO3 調控人類粒線體第一蛋白質複合體 NDUFS7 次單元在細胞內的位置及其對不同壓力的反應
SUMO3 conjugation of human mitochondrial complex I subunit NDUFS7 is contributed to its subcellular localization and response to various cellular stresses
指導教授: 高茂傑
Kao, Mou Chieh
口試委員: 林立元
Lin, Lih Yuan
張壯榮
Chang, Chuang Rung
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 88
中文關鍵詞: 粒線體第一酵素複合體NDUFS7次單元類小泛素缺氧氧化壓力
外文關鍵詞: Mitochondrion, NDUFS7, SUMO, hypoxia, oxidative stress
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    粒線體呼吸鏈第一酵素複合體對於能量產生是非常重要的。其中的次單元NADH
    dehydrogenase (ubiquinone) Fe-S protein 7 (NDUFS7) 具有高度保留性並含有第一酵素複合體
    最後一個鐵硫中心N2。NDUFS7 為一個由細胞核轉錄後在細胞質轉譯的蛋白並藉由粒線體標
    的序列(mitochondrial targeting sequence, MTS)進入粒線體。除此之外,在靠近NDUFS7C端
    的位置上帶有核導出訊號(nuclear export signal, NES)及核導入訊號(nuclear localization signal,
    NLS)。類小泛素化(SUMOylation)是指目標蛋白被類小泛素(small ubiquitin-like modifier,
    SUMO)進行可逆性的修飾且被認為在調控細胞內反應上扮演關鍵性的角色。在先前的研究,
    我們已經探討了SUMO1 對於NDUFS7 的修飾及其重要性。在本次的研究,我們進一步探討
    其他旁系(paralogue)的類小泛素蛋白SUMO3 對於NDUFS7 的修飾及功能。為了找出主要類
    小泛素化的位置,我們將SUMO3 上第11 號位置的離氨酸(Lysine)突變成精氨酸(Arginine)使
    其只能形成單一SUMO3 的鍵結但無法形成多個SUMO3 鍵結的長鏈,我們也將NDUFS7 上
    僅有可能與SUMO3形成鍵結的七個Lysine 及經預測最有可能形成非共價SUMO交互作用區
    域(SUMO-interacting motif, SIM)各別突變進行觀察。根據突變分析的結果,沒有任何一種上
    述建構的突變可以完全消除NDUFS7被SUMOylatiton 的現象。因此,NDUFS7的SUMOylation
    可能同時有多個Lysine 及SIM 的參與。另外,透過NDUFS7 與SUMO3 的融合蛋白
    (NDUFS7_SUMO3AA fusion protein)顯示與SUMO1 修飾相反的結果: SUMO3 的修飾會促進
    NDUFS7 進入粒線體內且幾乎不會出現在核內。SUMO3 修飾對於NDUFS7 的生理意義也利
    用給予不同的條件例如:破壞粒線體的膜電位、誘發細胞凋亡、缺氧、氧化壓力以及飢餓狀
    態進行探討。更進一步地,我們發現SUMO3 對NDUFS7 的修飾在氯化鈷(CoCl2)誘發的缺氧
    狀態會上升但在二氧化二氫(H2O2)誘導的氧化壓力時會下降。更詳細有關SUMOylation 如何
    影響NDUFS7 在胞內的移動及其生理意義值得更進一步的研究。


    Mitochondrial respiratory complex I (NADH:ubiquinone oxidoreductase) is essential for energy
    production. Human NADH dehydrogenase (ubiquinone) Fe-S protein 7 (NDUFS7) is a
    well-conserved subunit and contains an iron-sulfur cluster N2 (4Fe-4S tetranuclear) as the finial
    electron transport center in complex I. As a nuclear-encoded protein and translated in cytosol, we
    previously demonstrated NDUFS7 is imported into mitochondria by a mitochondrial targeting
    sequence (MTS). In addition, we also identified that NDUFS7 possesses a nuclear export signal
    (NES) and a nuclear localization signal (NLS) near the C-terminus. SUMOylation, the process of
    protein conjugation with a small ubiquitin-like modifier (SUMO), is one type of reversible
    modification and has been considered to play a key role in modulating many important cellular
    processes. In previous studies, we have shown that NDUFS7 could be modified by SUMO1 and the
    importance of this modification has been discussed. In this study, we tried to explore other
    involvement of SUMO3, another SUMO paralogue, in NDUFS7 modification and function. To
    map the major SUMOylation sites, we first mutated the lysine residue at position 11 on SUMO3 to
    arginine, which was used to study the mono-SUMOylation and abolished the poly-SUMOylated
    chain. We also constructed a series of NDUFS7 mutants with mutation(s) at seven lysine residues
    or removing the predicated SUMO-interacting motif (SIM). According to the result of
    mutation-scanning analyses, SUMOylation of NDUFS7 couldn’t be fully abolished in any of the
    mutant construct. Therefore, multiple lysine residues and SIMs might be involved in the
    SUMOylation of NDUFS7. In addition, the change of NDUFS7 translocation was observed in
    NDUFS7_SUMO3AA fusion protein. In contrast to SUMO1 modification, NDUFS7 conjugation
    with SUMO3 facilitated the import of NDUFS7 into mitochondria and nearly not in the nucleus.
    The biological meaning of NDUFS7 modification with SUMO3 was investigated by introducing
    various treatments such as dissipation of mitochondrial membrane potential, etoposide-induced
    III
    apoptosis, hypoxia, oxidative stress and deprivation of nutrition, respectively. Among them, we
    uncovered that SUMOylation of NDUFS7 with SUMO3 was up-regulated in the CoCl2-induced
    hypoxia condition but down-regulated under H2O2-triggered oxidative stress. The detailed
    mechanism about how SUMOylation influences NDUFS7 subcellular localization and its
    contribution to physiologic consequences deserves further exploration.

    中文摘要 ........................................................................................................ I Abstract ......................................................................................................... II Abbreviations .............................................................................................. IX Introduction ................................................................................................... 1 1. Mitochondria .............................................................................................................. 1 1.1 Mitochondrial homeostasis .................................................................................... 2 1.2 The machineries and mechanisms of protein importing into mitochondria ........... 3 1.3 The crosstalk between mitochondria and the nucleus ............................................ 4 1.3.1 Mitochondrial proteins directing mitochondria-to-nucleus signaling to regulate nuclear gene expression .................................................................................................. 5 1.3.2 Protein dual targeting to mitochondria and the nucleus in response to stress 6 1.4 Mitochondrial oxidative phosphorylation (OXPHOS) system .............................. 6 1.5 Respiratory supercomplex ...................................................................................... 7 1.6 Mammalian mitochondrial complex I: structure and function ............................... 8 1.6.1 Structure .................................................................................................... 8 1.6.2 Function .................................................................................................... 8 1.7 Human NADH dehydrogenase (ubiquinone) Fe-S protein 7 (NDUFS7) .............. 9 1.7.1 The implication of NDUFS7 in diseases ................................................. 10 2. SUMOylation ............................................................................................................ 11 2.1 Small ubiquitin-like modifier (SUMO) proteins .................................................. 12 2.2 The SUMO pathway ............................................................................................ 12 2.3 The SUMO modification site(s) ........................................................................... 14 2.3.1 SUMO consensus motifs (SCMs) for site-directed conjugation ............. 14 2.3.2 SUMO-interacting motifs (SIMs) ........................................................... 15 2.4 The consequence of SUMOylation and its biologic meaning .............................. 15 2.4.1 SUMOylation and subcellular translocation ........................................... 16 2.4.2 SUMO and genotoxic, DNA damage response ...................................... 17 2.4.3 SUMO and oxidative stress ..................................................................... 18 2.4.4 SUMO and nutrient response .................................................................. 18 2.4.5 SUMO and hypoxia ................................................................................ 19 3. SUMOylation in mitochondria ............................................................................... 20 The object of this study .............................................................................. 21 V Materials and methods ............................................................................... 22 Results .......................................................................................................... 33 1. The sequence alignments of NDUFS7 and its homologous species .......................... 33 2. The prediction of NDUFS7 modification by small ubiquitin-like modifier (SUMO)33 3. NDUFS7 is a substrate for SUMO3 modification ..................................................... 34 4. Multiple lysine residues are contributed to the SUMO3 modification of NDUFS7 .. 35 5. SUMO-interacting motifs (SIMs) are involved in the SUMO3 modification of NDUFS7 36 6. SUMO3 modification promotes the mitochondrial import of NDUFS7 ................... 37 7. Dissipation of mitochondrial membrane potential or apoptosis dose not have a significant effect on SUMO3 modification of NDUFS7 ................................................................. 38 8. The level of SUMO3 modification of NDUFS7 is reduced under H2O2-induced oxidative stress ............................................................................................................................... 39 9. Deprivation of serum does not have a significant effect on SUMO3 modification of NDUFS7 ........................................................................................................................................ 39 10. An increase of SUMO3 modification of NDUFS7 is observed under hypoxia condition induced by hypoxia-mimicking reagent CoCl2 .............................................................. 40 Discussion .................................................................................................... 41 1. The SUMOylation pattern of NDUFS7 ..................................................................... 42 2. The involvement of SUMOylation in subcellular location of NDUFS7 ................... 43 3. SUMOylation of NDUFS7 with SUMO3 and its physiologic consequences ............ 45 3.1 SUMOylation versus etoposide induced gentoxic stress and mitochondria-mediated apoptosis ..................................................................................................................... 45 3.2 SUMOylation versus oxidative stress and mitochondrial unfolded protein response 46 3.3 SUMOylation versus starvation and mitochondria autophagy ............................ 48 3.4 SUMOylation versus hypoxia and mitochondrial ROS ....................................... 49 4. The correlation of SUMOylation and phosphorylation in NDUFS7 ......................... 51 5. The limitation of the study ......................................................................................... 52 6. Conclusion ................................................................................................................. 53 Tables ........................................................................................................... 55 Figures .......................................................................................................... 57 References .................................................................................................... 70 Appendixes .................................................................................................. 80

    1. Martin, W., and Mentel, M. (2010) The origin of mitochondria. Nature Education 3, 58
    2. Harbauer, A. B., Zahedi, R. P., Sickmann, A., Pfanner, N., and Meisinger, C. (2014) The
    protein import machinery of mitochondria-a regulatory hub in metabolism, stress, and
    disease. Cell metabolism 19, 357-372
    3. Cagin, U., and Enriquez, J. A. (2015) The complex crosstalk between mitochondria and the
    nucleus: What goes in between? The international journal of biochemistry & cell biology 63,
    10-15
    4. Yun, J., and Finkel, T. (2014) Mitohormesis. Cell metabolism 19, 757-766
    5. Shadel, G. S., and Horvath, T. L. (2015) Mitochondrial ROS signaling in organismal
    homeostasis. Cell 163, 560-569
    6. Neupert, W., and Herrmann, J. M. (2007) Translocation of proteins into mitochondria.
    Annual review of biochemistry 76, 723-749
    7. Chacinska, A., Koehler, C. M., Milenkovic, D., Lithgow, T., and Pfanner, N. (2009)
    Importing mitochondrial proteins: machineries and mechanisms. Cell 138, 628-644
    8. Geissler, A., Krimmer, T., Bomer, U., Guiard, B., Rassow, J., and Pfanner, N. (2000)
    Membrane potential-driven protein import into mitochondria. The sorting sequence of
    cytochrome b(2) modulates the deltapsi-dependence of translocation of the matrix-targeting
    sequence. Molecular biology of the cell 11, 3977-3991
    9. Shiota, T., Mabuchi, H., Tanaka-Yamano, S., Yamano, K., and Endo, T. (2011) In vivo
    protein-interaction mapping of a mitochondrial translocator protein Tom22 at work.
    Proceedings of the National Academy of Sciences of the United States of America 108,
    15179-15183
    10. Omura, T. (1998) Mitochondria-targeting sequence, a multi-role sorting sequence
    recognized at all steps of protein import into mitochondria. Journal of biochemistry 123,
    1010-1016
    11. Chandel, N. S. (2014) Mitochondria as signaling organelles. BMC biology 12, 34
    12. Kotiadis, V. N., Duchen, M. R., and Osellame, L. D. (2014) Mitochondrial quality control
    and communications with the nucleus are important in maintaining mitochondrial function
    and cell health. Biochimica et biophysica acta 1840, 1254-1265
    13. Yogev, O., and Pines, O. (2011) Dual targeting of mitochondrial proteins: mechanism,
    regulation and function. Biochimica et biophysica acta 1808, 1012-1020
    14. Regev-Rudzki, N., and Pines, O. (2007) Eclipsed distribution: a phenomenon of dual
    targeting of protein and its significance. BioEssays : news and reviews in molecular,
    cellular and developmental biology 29, 772-782
    15. Monaghan, R. M., and Whitmarsh, A. J. (2015) Mitochondrial proteins moonlighting in the
    71
    nucleus. Trends in biochemical sciences 40, 728-735
    16. Nargund, A. M., Pellegrino, M. W., Fiorese, C. J., Baker, B. M., and Haynes, C. M. (2012)
    Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation.
    Science (New York, N.Y.) 337, 587-590
    17. Monaghan, R. M., Barnes, R. G., Fisher, K., Andreou, T., Rooney, N., Poulin, G. B., and
    Whitmarsh, A. J. (2015) A nuclear role for the respiratory enzyme CLK-1 in regulating
    mitochondrial stress responses and longevity. Nature cell biology 17, 782-792
    18. Sutendra, G., Kinnaird, A., Dromparis, P., Paulin, R., Stenson, T. H., Haromy, A.,
    Hashimoto, K., Zhang, N., Flaim, E., and Michelakis, E. D. (2014) A nuclear pyruvate
    dehydrogenase complex is important for the generation of acetyl-CoA and histone
    acetylation. Cell 158, 84-97
    19. Ahmed, S., Passos, J. F., Birket, M. J., Beckmann, T., Brings, S., Peters, H., Birch-Machin,
    M. A., von Zglinicki, T., and Saretzki, G. (2008) Telomerase does not counteract telomere
    shortening but protects mitochondrial function under oxidative stress. Journal of cell
    science 121, 1046-1053
    20. Chen, L. Y., Zhang, Y., Zhang, Q., Li, H., Luo, Z., Fang, H., Kim, S. H., Qin, L., Yotnda, P.,
    Xu, J., Tu, B. P., Bai, Y., and Songyang, Z. (2012) Mitochondrial localization of telomeric
    protein TIN2 links telomere regulation to metabolic control. Molecular cell 47, 839-850
    21. Chi, Z., Nie, L., Peng, Z., Yang, Q., Yang, K., Tao, J., Mi, Y., Fang, X., Balajee, A. S., and
    Zhao, Y. (2012) RecQL4 cytoplasmic localization: implications in mitochondrial DNA
    oxidative damage repair. The international journal of biochemistry & cell biology 44,
    1942-1951
    22. Croteau, D. L., Rossi, M. L., Canugovi, C., Tian, J., Sykora, P., Ramamoorthy, M., Wang, Z.
    M., Singh, D. K., Akbari, M., Kasiviswanathan, R., Copeland, W. C., and Bohr, V. A. (2012)
    RECQL4 localizes to mitochondria and preserves mitochondrial DNA integrity. Aging cell
    11, 456-466
    23. Yogev, O., Naamati, A., and Pines, O. (2011) Fumarase: a paradigm of dual targeting and
    dual localized functions. The FEBS journal 278, 4230-4242
    24. Forkink, M., Manjeri, G. R., Liemburg-Apers, D. C., Nibbeling, E., Blanchard, M., Wojtala,
    A., Smeitink, J. A., Wieckowski, M. R., Willems, P. H., and Koopman, W. J. (2014)
    Mitochondrial hyperpolarization during chronic complex I inhibition is sustained by low
    activity of complex II, III, IV and V. Biochimica et biophysica acta 1837, 1247-1256
    25. Sazanov, L. A. (2015) A giant molecular proton pump: structure and mechanism of
    respiratory complex I. Nature reviews. Molecular cell biology 16, 375-388
    26. Smeitink, J., van den Heuvel, L., and DiMauro, S. (2001) The genetics and pathology of
    oxidative phosphorylation. Nature reviews. Genetics 2, 342-352
    27. Hatefi, Y., Haavik, A. G., and Griffiths, D. E. (1962) Studies on the electron transfer system.
    XL. Preparation and properties of mitochondrial DPNH-coenzyme Q reductase. The
    Journal of biological chemistry 237, 1676-1680
    72
    28. Acín-Pérez, R., Fernández-Silva, P., Peleato, M. L., Pérez-Martos, A., and Enriquez, J. A.
    (2008) Respiratory active mitochondrial supercomplexes. Molecular cell 32, 529-539
    29. Vartak, R., Porras, C. A., and Bai, Y. (2013) Respiratory supercomplexes: structure,
    function and assembly. Protein & cell 4, 582-590
    30. Maranzana, E., Barbero, G., Falasca, A. I., Lenaz, G., and Genova, M. L. (2013)
    Mitochondrial respiratory supercomplex association limits production of reactive oxygen
    species from complex I. Antioxidants & redox signaling 19, 1469-1480
    31. Vinothkumar, K. R., Zhu, J., and Hirst, J. (2014) Architecture of mammalian respiratory
    complex I. Nature 515, 80-84
    32. Janssen, R. J., Nijtmans, L. G., van den Heuvel, L. P., and Smeitink, J. A. (2006)
    Mitochondrial complex I: structure, function and pathology. Journal of inherited metabolic
    disease 29, 499-515
    33. Brandt, U. (2006) Energy converting NADH:quinone oxidoreductase (complex I). Annual
    review of biochemistry 75, 69-92
    34. Sazanov, L. A., and Hinchliffe, P. (2006) Structure of the hydrophilic domain of respiratory
    complex I from Thermus thermophilus. Science (New York, N.Y.) 311, 1430-1436
    35. Hyslop, S. J., Duncan, A. M., Pitkanen, S., and Robinson, B. H. (1996) Assignment of the
    PSST subunit gene of human mitochondrial complex I to chromosome 19p13. Genomics 37,
    375-380
    36. Hirst, J. (2013) Mitochondrial complex I. Annual review of biochemistry 82, 551-575
    37. Hirst, J., Carroll, J., Fearnley, I. M., Shannon, R. J., and Walker, J. E. (2003) The nuclear
    encoded subunits of complex I from bovine heart mitochondria. Biochimica et biophysica
    acta 1604, 135-150
    38. Leigh, D. (1951) Subacute necrotizing encephalomyelopathy in an infant. Journal of
    neurology, neurosurgery, and psychiatry 14, 216
    39. Triepels, R. H., van den Heuvel, L. P., Loeffen, J. L., Buskens, C. A., Smeets, R. J., Rubio
    Gozalbo, M. E., Budde, S. M., Mariman, E. C., Wijburg, F. A., Barth, P. G., Trijbels, J. M.,
    and Smeitink, J. A. (1999) Leigh syndrome associated with a mutation in the NDUFS7
    (PSST) nuclear encoded subunit of complex I. Annals of neurology 45, 787-790
    40. Andreazza, A. C., Wang, J. F., Salmasi, F., Shao, L., and Young, L. T. (2013) Specific
    subcellular changes in oxidative stress in prefrontal cortex from patients with bipolar
    disorder. Journal of neurochemistry 127, 552-561
    41. Andreazza, A. C., Shao, L., Wang, J. F., and Young, L. T. (2010) Mitochondrial complex I
    activity and oxidative damage to mitochondrial proteins in the prefrontal cortex of patients
    with bipolar disorder. Archives of general psychiatry 67, 360-368
    42. Frykman, S., Teranishi, Y., Hur, J. Y., Sandebring, A., Yamamoto, N. G., Ancarcrona, M.,
    Nishimura, T., Winblad, B., Bogdanovic, N., Schedin-Weiss, S., Kihara, T., and Tjernberg,
    L. O. (2012) Identification of two novel synaptic gamma-secretase associated proteins that
    affect amyloid beta-peptide levels without altering Notch processing. Neurochemistry
    73
    international 61, 108-118
    43. Meluh, P. B., and Koshland, D. (1995) Evidence that the MIF2 gene of Saccharomyces
    cerevisiae encodes a centromere protein with homology to the mammalian centromere
    protein CENP-C. Molecular biology of the cell 6, 793-807
    44. Shen, Z., Pardington-Purtymun, P. E., Comeaux, J. C., Moyzis, R. K., and Chen, D. J. (1996)
    UBL1, a human ubiquitin-like protein associating with human RAD51/RAD52 proteins.
    Genomics 36, 271-279
    45. Okura, T., Gong, L., Kamitani, T., Wada, T., Okura, I., Wei, C. F., Chang, H. M., and Yeh,
    E. T. (1996) Protection against Fas/APO-1- and tumor necrosis factor-mediated cell death
    by a novel protein, sentrin. Journal of immunology (Baltimore, Md. : 1950) 157, 4277-4281
    46. Boddy, M. N., Howe, K., Etkin, L. D., Solomon, E., and Freemont, P. S. (1996) PIC 1, a
    novel ubiquitin-like protein which interacts with the PML component of a multiprotein
    complex that is disrupted in acute promyelocytic leukaemia. Oncogene 13, 971-982
    47. Mahajan, R., Delphin, C., Guan, T., Gerace, L., and Melchior, F. (1997) A small
    ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex
    protein RanBP2. Cell 88, 97-107
    48. Wilson, V. G. (2009) SUMO Regulation of Cellular Processes,
    49. Flotho, A., and Melchior, F. (2013) Sumoylation: a regulatory protein modification in
    health and disease. Annual review of biochemistry 82, 357-385
    50. Guo, D., Han, J., Adam, B. L., Colburn, N. H., Wang, M. H., Dong, Z., Eizirik, D. L., She, J.
    X., and Wang, C. Y. (2005) Proteomic analysis of SUMO4 substrates in HEK293 cells
    under serum starvation-induced stress. Biochemical and biophysical research
    communications 337, 1308-1318
    51. Wei, W., Yang, P., Pang, J., Zhang, S., Wang, Y., Wang, M. H., Dong, Z., She, J. X., and
    Wang, C. Y. (2008) A stress-dependent SUMO4 sumoylation of its substrate proteins.
    Biochemical and biophysical research communications 375, 454-459
    52. Xu, Z., and Au, S. W. (2005) Mapping residues of SUMO precursors essential in
    differential maturation by SUMO-specific protease, SENP1. The Biochemical journal 386,
    325-330
    53. Hickey, C. M., Wilson, N. R., and Hochstrasser, M. (2012) Function and regulation of
    SUMO proteases. Nature reviews. Molecular cell biology 13, 755-766
    54. Gareau, J. R., and Lima, C. D. (2010) The SUMO pathway: emerging mechanisms that
    shape specificity, conjugation and recognition. Nature reviews. Molecular cell biology 11,
    861-871
    55. Tatham, M. H., Jaffray, E., Vaughan, O. A., Desterro, J. M., Botting, C. H., Naismith, J. H.,
    and Hay, R. T. (2001) Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein
    substrates by SAE1/SAE2 and Ubc9. The Journal of biological chemistry 276,
    35368-35374
    56. Denuc, A., and Marfany, G. (2010) SUMO and ubiquitin paths converge. Biochemical
    74
    Society transactions 38, 34-39
    57. Matic, I., van Hagen, M., Schimmel, J., Macek, B., Ogg, S. C., Tatham, M. H., Hay, R. T.,
    Lamond, A. I., Mann, M., and Vertegaal, A. C. (2008) In vivo identification of human small
    ubiquitin-like modifier polymerization sites by high accuracy mass spectrometry and an in
    vitro to in vivo strategy. Molecular & cellular proteomics : MCP 7, 132-144
    58. Rodriguez, M. S., Dargemont, C., and Hay, R. T. (2001) SUMO-1 conjugation in vivo
    requires both a consensus modification motif and nuclear targeting. The Journal of
    biological chemistry 276, 12654-12659
    59. Hietakangas, V., Anckar, J., Blomster, H. A., Fujimoto, M., Palvimo, J. J., Nakai, A., and
    Sistonen, L. (2006) PDSM, a motif for phosphorylation-dependent SUMO modification.
    Proceedings of the National Academy of Sciences of the United States of America 103,
    45-50
    60. Yang, S. H., Galanis, A., Witty, J., and Sharrocks, A. D. (2006) An extended consensus
    motif enhances the specificity of substrate modification by SUMO. The EMBO journal 25,
    5083-5093
    61. Matic, I., Schimmel, J., Hendriks, I. A., van Santen, M. A., van de Rijke, F., van Dam, H.,
    Gnad, F., Mann, M., and Vertegaal, A. C. O. (2010) Site-specific identification of SUMO-2
    targets in cells reveals an inverted SUMOylation motif and a hydrophobic cluster
    SUMOylation motif. Molecular cell 39, 641-652
    62. Picard, N., Caron, V., Bilodeau, S., Sanchez, M., Mascle, X., Aubry, M., and Tremblay, A.
    (2012) Identification of estrogen receptor beta as a SUMO-1 target reveals a novel
    phosphorylated sumoylation motif and regulation by glycogen synthase kinase 3beta.
    Molecular and cellular biology 32, 2709-2721
    63. Kerscher, O. (2007) SUMO junction-what's your function? New insights through
    SUMO-interacting motifs. EMBO reports 8, 550-555
    64. Droescher, M., Chaugule, V. K., and Pichler, A. (2013) SUMO rules: regulatory concepts
    and their implication in neurologic functions. Neuromolecular medicine 15, 639-660
    65. Wilkinson, K. A., and Henley, J. M. (2010) Mechanisms, regulation and consequences of
    protein SUMOylation. The Biochemical journal 428, 133-145
    66. Wang, L., Ma, Q., Yang, W., Mackensen, G. B., and Paschen, W. (2012) Moderate
    hypothermia induces marked increase in levels and nuclear accumulation of
    SUMO2/3-conjugated proteins in neurons. Journal of neurochemistry 123, 349-359
    67. Guo, C., and Henley, J. M. (2014) Wrestling with stress: roles of protein SUMOylation and
    deSUMOylation in cell stress response. IUBMB life 66, 71-77
    68. Saitoh, H., and Hinchey, J. (2000) Functional heterogeneity of small ubiquitin-related
    protein modifiers SUMO-1 versus SUMO-2/3. The Journal of biological chemistry 275,
    6252-6258
    69. Wood, L. D., Irvin, B. J., Nucifora, G., Luce, K. S., and Hiebert, S. W. (2003) Small
    ubiquitin-like modifier conjugation regulates nuclear export of TEL, a putative tumor
    75
    suppressor. Proceedings of the National Academy of Sciences of the United States of
    America 100, 3257-3262
    70. Xia, P., Wang, S., Xiong, Z., Ye, B., Huang, L. Y., Han, Z. G., and Fan, Z. (2015) IRTKS
    negatively regulates antiviral immunity through PCBP2 sumoylation-mediated MAVS
    degradation. Nature communications 6, 8132
    71. Tempe, D., Piechaczyk, M., and Bossis, G. (2008) SUMO under stress. Biochemical Society
    transactions 36, 874-878
    72. Huang, T. T., Wuerzberger-Davis, S. M., Wu, Z. H., and Miyamoto, S. (2003) Sequential
    modification of NEMO/IKKgamma by SUMO-1 and ubiquitin mediates NF-kappaB
    activation by genotoxic stress. Cell 115, 565-576
    73. Bassi, C., Ho, J., Srikumar, T., Dowling, R. J. O., Gorrini, C., Miller, S. J., Mak, T. W.,
    Neel, B. G., Raught, B., and Stambolic, V. (2013) Nuclear PTEN controls DNA repair and
    sensitivity to genotoxic stress. Science (New York, N.Y.) 341, 395-399
    74. Watts, F. Z. (2006) Sumoylation of PCNA: Wrestling with recombination at stalled
    replication forks. DNA repair 5, 399-403
    75. Kolesar, P., Sarangi, P., Altmannova, V., Zhao, X., and Krejci, L. (2012) Dual roles of the
    SUMO-interacting motif in the regulation of Srs2 sumoylation. Nucleic acids research 40,
    7831-7843
    76. Enserink, J. M. (2015) Sumo and the cellular stress response. Cell division 10, 4
    77. Sahin, U., Ferhi, O., Jeanne, M., Benhenda, S., Berthier, C., Jollivet, F., Niwa-Kawakita, M.,
    Faklaris, O., Setterblad, N., de The, H., and Lallemand-Breitenbach, V. (2014) Oxidative
    stress-induced assembly of PML nuclear bodies controls sumoylation of partner proteins.
    The Journal of cell biology 204, 931-945
    78. Bossis, G., Malnou, C. E., Farras, R., Andermarcher, E., Hipskind, R., Rodriguez, M.,
    Schmidt, D., Muller, S., Jariel-Encontre, I., and Piechaczyk, M. (2005) Down-regulation of
    c-Fos/c-Jun AP-1 dimer activity by sumoylation. Molecular and cellular biology 25,
    6964-6979
    79. Feligioni, M., and Nistico, R. (2013) SUMO: a (oxidative) stressed protein. Neuromolecular
    medicine 15, 707-719
    80. Gius, D., Botero, A., Shah, S., and Curry, H. A. (1999) Intracellular oxidation/reduction
    status in the regulation of transcription factors NF-kappaB and AP-1. Toxicology letters 106,
    93-106
    81. Shim, H. S., Wei, M., Brandhorst, S., and Longo, V. D. (2015) Starvation promotes REV1
    SUMOylation and p53-dependent sensitization of melanoma and breast cancer cells.
    Cancer research 75, 1056-1067
    82. Lee, J., Yang, D. J., Lee, S., Hammer, G. D., Kim, K. W., and Elmquist, J. K. (2016)
    Nutritional conditions regulate transcriptional activity of SF-1 by controlling sumoylation
    and ubiquitination. Scientific reports 6
    83. Bae, S.-H., Jeong, J.-W., Park, J. A., Kim, S.-H., Bae, M.-K., Choi, S.-J., and Kim, K.-W.
    76
    (2004) Sumoylation increases HIF-1α stability and its transcriptional activity. Biochemical
    and biophysical research communications 324, 394-400
    84. Berta, M. A., Mazure, N., Hattab, M., Pouysségur, J., and Brahimi-Horn, M. C. (2007)
    SUMOylation of hypoxia-inducible factor-1α reduces its transcriptional activity.
    Biochemical and biophysical research communications 360, 646-652
    85. Nunez-O'Mara, A., Gerpe-Pita, A., Pozo, S., Carlevaris, O., Urzelai, B., Lopitz-Otsoa, F.,
    Rodriguez, M. S., and Berra, E. (2015) PHD3-SUMO conjugation represses HIF1
    transcriptional activity independently of PHD3 catalytic activity. Journal of cell science 128,
    40-49
    86. Wang, J., Wang, Y., and Lu, L. (2012) De-SUMOylation of CCCTC binding factor (CTCF)
    in hypoxic stress-induced human corneal epithelial cells. The Journal of biological
    chemistry 287, 12469-12479
    87. Chen, H., and Chan, D. C. (2005) Emerging functions of mammalian mitochondrial fusion
    and fission. Human molecular genetics 14, R283-R289
    88. Figueroa-Romero, C., Iñiguez-Lluhí, J. A., Stadler, J., Chang, C.-R., Arnoult, D., Keller, P.
    J., Hong, Y., Blackstone, C., and Feldman, E. L. (2009) SUMOylation of the mitochondrial
    fission protein Drp1 occurs at multiple nonconsensus sites within the B domain and is
    linked to its activity cycle. The FASEB Journal 23, 3917-3927
    89. Frank, S., Gaume, B., Bergmann-Leitner, E. S., Leitner, W. W., Robert, E. G., Catez, F.,
    Smith, C. L., and Youle, R. J. (2001) The role of dynamin-related protein 1, a mediator of
    mitochondrial fission, in apoptosis. Developmental cell 1, 515-525
    90. Wasiak, S., Zunino, R., and McBride, H. M. (2007) Bax/Bak promote sumoylation of DRP1
    and its stable association with mitochondria during apoptotic cell death. The Journal of cell
    biology 177, 439-450
    91. Prudent, J., Zunino, R., Sugiura, A., Mattie, S., Shore, G. C., and McBride, H. M. (2015)
    MAPL SUMOylation of Drp1 Stabilizes an ER/Mitochondrial Platform Required for Cell
    Death. Molecular cell 59, 941-955
    92. Zhu, S., and Matunis, M. J. (2009) Characterization of the effects and functions of
    sumoylation through rapamycin-mediated heterodimerization. Methods in molecular
    biology (Clifton, N.J.) 497, 153-164
    93. Sohn, S. Y., and Hearing, P. (2016) The adenovirus E4-ORF3 protein functions as a SUMO
    E3 ligase for TIF-1gamma sumoylation and poly-SUMO chain elongation. Proceedings of
    the National Academy of Sciences of the United States of America
    94. Berndt, A., Hofmann-Winkler, H., Tavalai, N., Hahn, G., and Stamminger, T. (2009)
    Importance of covalent and noncovalent SUMO interactions with the major human
    cytomegalovirus transactivator IE2p86 for viral infection. Journal of virology 83,
    12881-12894
    95. Liu, Y. C., Lin, M. C., Chen, H. C., Tam, M. F., and Lin, L. Y. (2011) The role of small
    ubiquitin-like modifier-interacting motif in the assembly and regulation of metal-responsive
    77
    transcription factor 1. The Journal of biological chemistry 286, 42818-42829
    96. Song, J., Durrin, L. K., Wilkinson, T. A., Krontiris, T. G., and Chen, Y. (2004)
    Identification of a SUMO-binding motif that recognizes SUMO-modified proteins.
    Proceedings of the National Academy of Sciences of the United States of America 101,
    14373-14378
    97. Carroll, J., Fearnley, I. M., Shannon, R. J., Hirst, J., and Walker, J. E. (2003) Analysis of the
    subunit composition of complex I from bovine heart mitochondria. Molecular & Cellular
    Proteomics 2, 117-126
    98. Panse, V. G., Kressler, D., Pauli, A., Petfalski, E., Gnadig, M., Tollervey, D., and Hurt, E.
    (2006) Formation and nuclear export of preribosomes are functionally linked to the
    small-ubiquitin-related modifier pathway. Traffic (Copenhagen, Denmark) 7, 1311-1321
    99. Finkbeiner, E., Haindl, M., and Muller, S. (2011) The SUMO system controls nucleolar
    partitioning of a novel mammalian ribosome biogenesis complex. The EMBO journal 30,
    1067-1078
    100. Petrungaro, C., and Riemer, J. (2014) Mechanisms and physiological impact of the dual
    localization of mitochondrial intermembrane space proteins. Biochemical Society
    transactions 42, 952-958
    101. Park, J. H., Lee, S. W., Yang, S. W., Yoo, H. M., Park, J. M., Seong, M. W., Ka, S. H., Oh,
    K. H., Jeon, Y. J., and Chung, C. H. (2014) Modification of DBC1 by SUMO2/3 is crucial
    for p53-mediated apoptosis in response to DNA damage. Nature communications 5
    102. Harder, Z., Zunino, R., and McBride, H. (2004) Sumo1 conjugates mitochondrial substrates
    and participates in mitochondrial fission. Current Biology 14, 340-345
    103. Halliwell, B. (2007) Oxidative stress and cancer: have we moved forward? Biochemical
    Journal 401, 1-11
    104. Forkink, M., Basit, F., Teixeira, J., Swarts, H. G., Koopman, W. J., and Willems, P. H.
    (2015) Complex I and complex III inhibition specifically increase cytosolic hydrogen
    peroxide levels without inducing oxidative stress in HEK293 cells. Redox biology 6,
    607-616
    105. Sang, J., Yang, K., Sun, Y., Han, Y., Cang, H., Chen, Y., Shi, G., Wang, K., Zhou, J., Wang,
    X., and Yi, J. (2011) SUMO2 and SUMO3 transcription is differentially regulated by
    oxidative stress in an Sp1-dependent manner. The Biochemical journal 435, 489-498
    106. Bossis, G., and Melchior, F. (2006) Regulation of SUMOylation by reversible oxidation of
    SUMO conjugating enzymes. Molecular cell 21, 349-357
    107. Manza, L. L., Codreanu, S. G., Stamer, S. L., Smith, D. L., Wells, K. S., Roberts, R. L., and
    Liebler, D. C. (2004) Global shifts in protein sumoylation in response to electrophile and
    oxidative stress. Chemical research in toxicology 17, 1706-1715
    108. Rauthan, M., Ranji, P., Abukar, R., and Pilon, M. (2015) A Mutation in Caenorhabditis
    elegans NDUF-7 Activates the Mitochondrial Stress Response and Prolongs Lifespan via
    ROS and CED-4. 5, 1639-1648
    78
    109. Pirkmajer, S., and Chibalin, A. V. (2011) Serum starvation: caveat emptor. American
    journal of physiology. Cell physiology 301, C272-279
    110. Hailey, D. W., Rambold, A. S., Satpute-Krishnan, P., Mitra, K., Sougrat, R., Kim, P. K.,
    and Lippincott-Schwartz, J. (2010) Mitochondria supply membranes for autophagosome
    biogenesis during starvation. Cell 141, 656-667
    111. Gomes, L. C., Di Benedetto, G., and Scorrano, L. (2011) During autophagy mitochondria
    elongate, are spared from degradation and sustain cell viability. Nature cell biology 13,
    589-598
    112. Rambold, A. S., Kostelecky, B., Elia, N., and Lippincott-Schwartz, J. (2011) Tubular
    network formation protects mitochondria from autophagosomal degradation during nutrient
    starvation. Proceedings of the National Academy of Sciences 108, 10190-10195
    113. Yuan, Y., Hilliard, G., Ferguson, T., and Millhorn, D. E. (2003) Cobalt inhibits the
    interaction between hypoxia-inducible factor-α and von Hippel-Lindau protein by direct
    binding to hypoxia-inducible factor-α. Journal of Biological Chemistry 278, 15911-15916
    114. Chavez, A., Miranda, L. F., Pichiule, P., and Chavez, J. C. (2008) Mitochondria and
    hypoxia-induced gene expression mediated by hypoxia-inducible factors. Annals of the New
    York Academy of Sciences 1147, 312-320
    115. Chandel, N. S., Maltepe, E., Goldwasser, E., Mathieu, C. E., Simon, M. C., and Schumacker,
    P. T. (1998) Mitochondrial reactive oxygen species trigger hypoxia-induced transcription.
    Proceedings of the National Academy of Sciences 95, 11715-11720
    116. Chang, C. C., Naik, M. T., Huang, Y. S., Jeng, J. C., Liao, P. H., Kuo, H. Y., Ho, C. C.,
    Hsieh, Y. L., Lin, C. H., Huang, N. J., Naik, N. M., Kung, C. C., Lin, S. Y., Chen, R. H.,
    Chang, K. S., Huang, T. H., and Shih, H. M. (2011) Structural and functional roles of Daxx
    SIM phosphorylation in SUMO paralog-selective binding and apoptosis modulation.
    Molecular cell 42, 62-74
    117. Tan, J.-A. T., Song, J., Chen, Y., and Durrin, L. K. (2010) Phosphorylation-dependent
    interaction of SATB1 and PIAS1 directs SUMO-regulated caspase cleavage of SATB1.
    Molecular and cellular biology 30, 2823-2836
    118. Wu, H., Sun, L., Zhang, Y., Chen, Y., Shi, B., Li, R., Wang, Y., Liang, J., Fan, D., and Wu,
    G. (2006) Coordinated regulation of AIB1 transcriptional activity by sumoylation and
    phosphorylation. Journal of Biological Chemistry 281, 21848-21856
    119. Zhang, J., Yuan, C., Wu, J., Elsayed, Z., and Fu, Z. (2015) Polo-like kinase 1-mediated
    phosphorylation of Forkhead box protein M1b antagonizes its SUMOylation and facilitates
    its mitotic function. The Journal of biological chemistry 290, 3708-3719
    120. Zunino, R., Schauss, A., Rippstein, P., Andrade-Navarro, M., and McBride, H. M. (2007)
    The SUMO protease SENP5 is required to maintain mitochondrial morphology and
    function. Journal of cell science 120, 1178-1188
    121. Guo, C., Hildick, K. L., Luo, J., Dearden, L., Wilkinson, K. A., and Henley, J. M. (2013)
    SENP3-mediated deSUMOylation of dynamin-related protein 1 promotes cell death
    79
    following ischaemia. The EMBO journal 32, 1514-1528
    122. Huang, C., Han, Y., Wang, Y., Sun, X., Yan, S., Yeh, E. T. H., Chen, Y., Cang, H., Li, H.,
    and Shi, G. (2009) SENP3 is responsible for HIF􀋭1 transactivation under mild oxidative
    stress via p300 de􀋭SUMOylation. The EMBO journal 28, 2748-2762
    123. Krumova, P., and Weishaupt, J. H. (2013) Sumoylation in neurodegenerative diseases.
    Cellular and molecular life sciences : CMLS 70, 2123-2138
    124. Bettermann, K., Benesch, M., Weis, S., and Haybaeck, J. (2012) SUMOylation in
    carcinogenesis. Cancer letters 316, 113-125
    125. Huang, C. J., Wu, D., Khan, F. A., and Huo, L. J. (2015) DeSUMOylation: An Important
    Therapeutic Target and Protein Regulatory Event. DNA and cell biology 34, 652-660
    126. Fulda, S., Galluzzi, L., and Kroemer, G. (2010) Targeting mitochondria for cancer therapy.
    Nature reviews Drug discovery 9, 447-464
    127. Guo, W.-h., Yuan, L.-h., Xiao, Z.-h., Liu, D., and Zhang, J.-x. (2011) Overexpression of
    SUMO-1 in hepatocellular carcinoma: a latent target for diagnosis and therapy of hepatoma.
    Journal of cancer research and clinical oncology 137, 533-541
    128. Gogvadze, V., Orrenius, S., and Zhivotovsky, B. (2008) Mitochondria in cancer cells: what
    is so special about them? Trends in cell biology 18, 165-173

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE