研究生: |
洪雅玲 Yea-Ling Hong |
---|---|
論文名稱: |
針對反及閘型態快閃記憶體的實際故障模型 A Realistic Fault Model of NAND-type Flash Memory |
指導教授: |
張慶元
Tsin-Yuan Chang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2000 |
畢業學年度: | 88 |
語文別: | 英文 |
論文頁數: | 55 |
中文關鍵詞: | 快閃記憶體 、故障模型 、故障行為 、測試 |
外文關鍵詞: | flash memory, fault model, faulty behavior, testing |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
快閃記憶體目前被廣泛地應用在各種電腦、通訊、及消費性電子產品中。隨著其記憶容量的增加和應用層面的擴展,一個有效的故障模型在快閃記憶體的測試上更是扮演一個重要的角色。而一般靜╱動態隨機存取記憶體的元件結構和操作模式都和快閃記憶體有相當大的差別,所以其故障行為必定迥然不同。因此,必須要另外發展適用於快閃記憶體的故障模型。
反及閘型態快閃記憶體是快閃記憶體中常被使用的一種。在此篇論文中,我們利用反及閘型態快閃記憶體的陣列來進行故障行為分析。在論文的第三章中,我們提出記憶單元的等效電路模型,並用 HSPICE 這套電路模擬軟體來驗證並模擬快閃記憶體的行為。此等效電路模型可以模擬記憶單元在寫入和清除時的臨界電壓變化、汲極電流量、穿遂電流量、及電荷保存特性。
在論文的第四章中,利用第三章所提出的等效電路模型來進行故障行為的模擬和分析。我們考慮記憶單元陣列上可能發生的缺陷,模擬電路中的電阻性短路、開路、和位元線間的耦合效應所造成的故障行為,並歸納整理出14種故障。
由研究結果發現,只考慮固定電位故障的故障模型對於快閃記憶體是不夠的,其故障涵蓋率相當低。在此篇論文中,我們在電路層級模擬反及閘型態快閃記憶體的實際故障行為,並根據模擬結果建立出正確且實用的故障模型。
In the recently years, flash memories are becoming widely used in many applications, such as solid state disks, embedded controller, and mobile communication products. Therefore, the fault modeling of flash memories plays an important role in the testing field.
The NAND-type flash memory is one of the commonly used flash memories. To explore all faulty behaviors on NAND-type flash memory is impractical, and therefore the SPICE model level simulation for defects is considered. In this thesis, two SPICE models of the flash cell are developed and used for circuit-level faulty behavior simulation. The defects can be classified to 25 types and result in 14 types of faults.
For our study, resistive short defects generally cause parametric faults. We propose the faulty behavior with different order of short resistance and coupling capacitance. The results show that resistive short defects not only cause parametric faults but also cause stuck-at fault or degraded threshold voltage fault.
From the proposed fault model, if only stuck-at-1 and 0 faults are considered, the fault coverage is poor. However, traditional 100% fault coverage based on stuck-at fault model is too far from real fault coverage.
[1] S. Grossman, "Future Trends in Flash Memories," Records of the IEEE International Workshop on Memory Technology, Design and Testing, pp. 2-3, 1996.
[2] R. Dekker, F. Beenker, and L. Thijssen, "A Realistic Fault Model and Test Algorithms for Static Ransom Access Memories," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 9, no. 6, pp. 567-572,June 1990.
[3] A. J. Van de Goor, "Testing Semiconductor Memories: Theory and Practice," Wiley, 1991.
[4] K. Hakozaki, S.-I. Sato, K. Iguchi, and K. Sakiyama, "A New Technique and a Test Structure Evaluating Vth Distribution of Flash Memory Cells," Proc. IEEE International Conference on Microelectronic Test Structures, pp. 127-130, 1997.
[5] A. K. Sharma, "Semiconductor Memories: Technology, Testing, and Reliability," The IEEE Inc., pp. 180-185, 1996.
[6] M. G. Mohammad, K. K. Saluja, and Alex Yap, "Testing Flash Memories," 13th International Conference on VLSI Design, pp. 406-411, Jan. 2000.
[7] J. N. Ko, "Fault Modeling and Testing/On-Chip Test Circuit of Flash Memory," Master Thesis, Dept. EE National Tsing Hua University, 1999.
[8] K. Y. Laio and C. C. Su, "Programmable Memory Test Module for Monitored Burn-in," Master Thesis, Dept. EE National Central University, 1997.
[9] M. Lenzlinger and E. H. Snow, "Fowler-Nordheim tunneling into thermally grown SiO2," J. Appl. Phys., vol. 40, no. 1, pp. 278-284, 1969.
[10] K. V. Noren and M. Meng, "Macromodel Development for FLOTOX EEPROM," IEEE Transactions on Electron Devices, vol. 45, no. 1, pp. 224-229, 1998.
[11] R. Kirisawa, S. Aritome, R. Nakayama, T. Endoh, R. Shirota, and F. Masuoka, "A NAND Structured Cell with a New Programming Technology for Highly Reliable 5V-Only Flash EEPROM," Symposium on VLSI Technology, Digest of Technical Papers, pp. 129-130, 1990.
[12] T. Tanaka, M. Momodomi, Y. Iwata, Y. Tanaka, H. Oodaira, Y. Itoh, R. Shirota, K. Ohuchi, and F. Masuoka, "A 4-Mbit NAND-EEPROM with Tight Programmed Vt Distribution," Symposium on VLSI Circuits, Digest of Technical Papers, pp. 105-106, 1990.
[13] Y. Iwata, M. Momodomi, T. Tanaka, H. Oodaira, Y. Itoh, R. Nakayama, R. Kirisawa, S. Aritome, T. Endoh, R. Shirota, k. Ohuchi, and F. Masuoka, "A High-Density NAND EEPROM with Block-Page Programming for Microcomputer Applications," IEEE Journal of Solid-State Circuits, vol. 25, no. 2, pp. 417-424, 1990.
[14] M. Lanzoni, J. Sune, P. Olivo, and B. Ricco, "Advanced Electrical-Level Modeling of EEPROM Cells," IEEE Transactions on Electron Devices, vol. 40, no. 5, pp. 951-957, 1993.
[15] T. K. Yu, J. Higman, C. Cavins, K. T. Chang, and M. Orlowski, "An EEPROM Model for Low Power Circuit Design and Simulation," International Electron Devices Meeting, Technical Digest, pp. 157-160, 1994.
[16] B. L. Luderman, K. T. Chang, J. Su, C. Cavins, J. Pabst, T. K. Yu, and J. Higman, "Reducing Power Dissipation in Low Voltage Flash Memories," IEEE International ASIC Conference and Exhibit Proceedings, pp. 305-308, 1996.
[17] S. S. Chung, C. M. Yih, S. S. Wu, H. H. Chen, and Gary Hong, "A SPICE-Compatible Flash EEPROM Model Feasible for Transient and Program/Erase Cycling Endurance Simulation," IEDM Technical Digest, pp. 7.7.1 -7.7.4, 1999.
[18] T. Tanaka, Y. Tanaka, H. Nakamura, K. Sakui, H. Oodaira, R. Shirota, K. Ohuchi, F. Masuoka, and H. Hara, "A Quick Intelligent Page-Programming Architecture and a Shielded Bitline Sensing Method for 3V-Only NAND Flash Memory," IEEE Journal of Solid-State Circuits, vol. 29, no. 11, pp. 1366-1373, 1994.
[19] H. Nakamura, J. Miyamoto, K. Imamiya, and Y. Iwata, "A Novel Sense Amplifier for Flexible Voltage Operation NAND Flash Memories," VLSI Circuits Digest of Technical Papers, pp. 71-72, 1995.