簡易檢索 / 詳目顯示

研究生: 林冠竹
Lin, Kuan Chu
論文名稱: 孤立微電網下電力轉換器P-f/Q-V'垂降控制線性化模型分析及實作
P-f/Q-V' Droop Control of Multi Converters in Isolated Micro-Grids: Linearized System Analysis and Hardware Implementations
指導教授: 朱家齊
Chu, Chia Chi
口試委員: 謝振中
Shieh, Jenn Jong
張偉能
Chang, Wei Neng
連國龍
Lian, Kuo Lung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 60
中文關鍵詞: 垂降控制孤島模式穩定度分析電壓源轉換器微電網
外文關鍵詞: Droop control, Islanding mode, Stability, Voltage Source Converter, Microgrid
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在微電網系統中,相較於以往傳統電網使用集中式發電的方式,分散式發電更適用於講究綠色能源的現代。而如何使各分散式發電源做合理的功率輸出分配是相當重要的一個議題。而垂降控制法能有效的使電網中的電力轉換器做出合理的功率分配;其中,𝑃−𝑓/𝑄−V'垂降控制法能有效的處理實功分配的問題,而在虛功方面,也改善了傳統垂降控制易受輸出線阻抗影響的缺點。本論採用𝑃−𝑓/𝑄−V'垂降控制作為微電網中功率分配之控制法。
    為了可以快速的檢測微電網系統之穩定度,本論文提出一個應用𝑃−𝑓/𝑄−V' ̇垂降控制之微電網的系統降階穩定度分析模型。由於一般稍具規模的微電網系統之數學模型相當複雜,為了能快速的驗證微電網系統的穩定情形,所以應用了座標轉換及線性化之數學技巧,將複雜之微電網穩定度數學模型簡化;降階簡化後之數學模型只需考慮逆變器間之傳輸線阻抗及垂降控制係數即可判斷微電網系統之穩定度情形。本論文最後以實際系統參數代入降階穩定度模型,並配合Simulink模擬以及硬體實驗驗證降階穩定度模型之準確性。最終的三機模擬及兩機實驗結果證實,降階模型找出之會致使系統主極點到不穩定域的理論垂降增益值,跟實際模擬及實驗之造成系統開始不穩定之垂降增益直數量級很接近;此結果也證實此數學模型確實提供一個快速設計垂降增益之方法。


    The droop control method is one of the issues for proper power distributions in isolated microgrids; in this thesis, the 𝑃−𝑓/𝑄−V ̇ droop control method will be analyzed by linearized systems. One salient feature is that the 𝑃−𝑓/𝑄−V ̇ droop control method can effectively regulate the power sharing among the inverters in the microgrid. It indeed solves the problem of the improper reactive power sharing by conventional droop control methods.
    In order to capture the essential stability issues in the 𝑃−𝑓/𝑄−V ̇ droop control method, the reduced-ordered model is proposed first in this thesis. Then the analysis will be proceeded by the corresponding transfer matrix. Under certain conditions, it can be shown that the stability of the microgrid system can be determined by impedances of transmissions between the inverters and the droop gains. Simulation studies will be performed on Simulink. Techniques about the root locus are utilize to examine the sensitivity of each parameters used in the droop control. In order to validate the proposed method, experimental studies will be conducted by verify the feasibility and the correctness of the proposed method.

    Abstract II 摘要 IV Acknowledgements IV Table of Contents VI List of Illustrations VIII List of Tables X Chapter 1 Introduction 1 1.1 Background and Motivation 2 1.2 Contribution 2 1.3 Organization of the Thesis 3 Chapter 2 Droop control Method 4 2.1 Introduction 4 2.2 Droop Control Method 4 2.2.1 CONVENTIONAL 𝑃−𝑓/𝑄−V DROOP CONTROL METHOD 4 2.2.1 𝑃−𝑓/𝑄−V ̇ DROOP CONTROL METHOD WITH VOLTAGE RESTORATION 4 2.3 Summary 8 Chapter 3 stablility analysis of linearized modles 9 3.1 Introduction 9 3.2 Microgrid Construction 9 3.2.1 MICROGRID MODEL TOPOLOGY 9 3.2.2 MICROGRID PLANT MODEL 10 3.2.3 MICROGRID MODEL REDUCTIONS 14 3.2 P-f/Q-V ̇ Droop Control with Voltage Restoration Equations 16 3.3 Closed-loop Microgrid Model Analysis 19 3.4 Summary 25 Chapter 4 hardware implimentation 26 4.1 Introduction 26 4.2 Hardware experiment plant 27 4.2.1 SINGLE VOLTAGE SOURCE CONVERTER 27 4.2.2 DSP28335 DEVELOPMENT BOARD 28 4.2.3 PROTECTION BOARD 30 4.2.4 GATE DRIVER 31 4.2.5 POWER STAGE 31 Chapter 5 Simulations and Hardware Experiments 33 5.1 Introduction 33 5.2 Poles and Zeros Analysis 33 5.3 Time Domain Simulations 41 5.4 Hardware Experiment Results 47 5.5 Summary 56 Chapter 6 Conclusions and future dirctions 57 Reference 58

    [1] T. L. Vandoorn, J. D. M. De Kooning, B. Meersman, L. Vandenelde, “Review of primary control strategies for islanded microgrids with power-electronic interfaces” in Renewable and Sustainable Energy Reviews 19(2013) 613-628
    [2] R. Lasseter, “Microgrids,” in Proc. IEEE Power Eng. Soc. Winter Meet.,2002, pp. 305–308.
    [3] M. Barnes, J. Kondoh, H. Asano, J. Oyarzabal, G. Ventakaramanan, R. Lasseter, N. Hatziargyriou, and T. Green, “Real-world microgrids-an overview,” in Proc. IEEE Int. Conf. Syst. Syst. Eng., Apr., 2007, pp. 1–8.
    [4] R. Lasseter and P. Piagi, “Microgrids: A conceptual solution,” in Proc. 35th Power Electron. Spec. Conf., Jun. 2004, vol. 6, pp. 4285–4290.
    [5] P. Loh, M. Newman, D. Zmood, and D. Holmes, “A comparative analysis of multiloop voltage regulation strategies for single and three-phase ups systems,” IEEE Trans. Power Electron., vol. 18, no. 5, pp. 1176–1185, Sep. 2003.
    [6] G. Venkataramanan and M. Illindla, “Microgrids and sensitive loads,” in Proc. IEEE Power Eng. Soc. Winter Meeting, Jan. 2001, vol. 1, pp. 315–322.
    [7] M. C. Chandrokar, D. M. Divan, and R. Adapa, “Control of parallel connected inverters in standalone ac supply systems,” IEEE Trans. Ind. Appl., vol. 29, no. 1, pp. 136–143, Jan./Feb. 1993.
    [8] M. C. Chandrokar, D. M. Divan, and B. Banerjee, “Control of distributed ups systems,” in Proc. IEEE Power Electron. Spec. Conf., Jun., 1994, pp. 197–204.
    [9] M. Chandorkar and D. Diwan, “Decentralized operation of distributed ups systems,” in Proc. Power Electron., Drives Energy Syst. Ind. Growth, Jan., 1996, vol. 1, pp. 565–571.
    [10] C. Sao and P. Lehn, “Autonomous load sharing of voltage source converters,”
    IEEE Trans. Power Del., vol. 20, no. 2, pp. 1009–1016, Apr. 2005.
    [11] J. Guerrero, L. Vicuna, J. Matas, M. Castilla, and J. Miret, “Output impedance design of parallel-connected ups inverters with wireless loadsharing control,” IEEE Trans. Ind. Electron., vol. 52, no. 4, pp. 1126–1135, Aug. 2005.
    [12] J. Guerrero, L. Hang, and J. Uceda, “Control of distributed uninterruptible power supply systems,” IEEE Trans. Ind. Electron., vol. 55, no. 8, pp. 2845–2859, Aug. 2008.
    [13] P. Piagi and R. Lasseter, “Autonomous control of microgrids,” in Proc. IEEE Power Eng. Society General Meet., 2006, pp. 1–8.
    [14] M. N. Marwali, J.-W. Jung, and A. Keyhani, “Control of distributed generation
    systems—Part II: Load sharing control,” IEEE Trans. Power Electron., vol. 19, no. 6, pp. 1551–1561, Nov. 2004.
    [15] K. D. Brabandere, B. Bolsens, J. V. denKeybus, A. Woyte, J.Driesen, and R. Belmans, “A voltage and frequency droop control method for parallel inverters,” IEEE Trans. Power Electron., vol. 22, no. 4, pp. 1107–1115, Jul. 2007.
    [16] E. Barklund, N. Pogaku, M. Prodanovic, C. Hernandez-Aramburo, and T. C. Green, “Energy management in autonomous microgrid using stabilityconstrained droop control of inverters,” IEEE Trans. Power Electron.,
    vol. 23, no. 5, pp. 2346–2352, Sep. 2008.
    [17] A. Engler and N. Soultanis, “Droop control in LV-grids,” in Proc. IEEE Future Power Syst., Nov., 2005, pp. 1–6.
    [18] Y. W. Li and C. N. Kao, “An accurate power control strategy for powerelectronics-interfaced distributed generation units operating in a lowvoltagemultibus microgrid,” IEEE Trans. Power Electron., vol. 24, no. 12,
    pp. 2977–2988, Aug. 2009.
    [19] J. M. Guerrero, L.G. deVicuna, J.Matas, M.Castilla, and J.Miret, “Output impedance design of parallel-connected UPS inverters with wireless loadsharing control,” IEEE Trans. Ind. Electron., vol. 52, no. 4, pp. 1126–1135, Aug. 2005.
    [20] H. Akagi, Y. Kanazawa, and A. Nabae, “Generalized theory of the instantaneous reactive power in three-phase circuits,” in Proc. IEEE Int. Power Electron. Conf., 1983, pp. 1375–1386.
    [21] C.T. Lee, C.C. Chu and P.T. Cheng, "A New Droop Control Method for the Autonomous Operation of Distributed Energy Resource Interface Converters," IEEE Trans. Power Electron., vol.28, no.4, pp.1980-1993, April 2013.
    [22] E. Coelho, P. Cortizo, and P. Garcia, “Small-signal stability for parallelconnected inverters in stand-alone ac supply systems,” IEEE Trans. Ind. Appl., vol. 38, no. 2, pp. 533–542, Mar./Apr. 2002.
    [23] N. Pogaku, N. Prodanovic, and T. Green, “Modeling, analysis and testing of autonoumous operation of an inverter-based microgrid,” IEEE Trans. Power Electron., vol. 22, no. 2, pp. 613–625, Mar. 2007.
    [24] Y. Mohamed and E. Saadany, “Adaptive decentralized droop controller to preserve power sharing stability of paralleled inverters in distributed generation microgrids,” IEEE Trans. Power Electron., vol. 23, no. 6, pp. 2806–2816, Nov. 2008.
    [25] R. Majumder, B. Chaudhuri, A. Ghosh, R. Majumder, G. Ledwich and F. Zare, "Improvement of stability and load sharing in an autonomous microgrid using supplementary droop control loop," Power and Energy Society General Meeting, 2010 IEEE , vol., no., pp. 25-29, July 2010.
    [26] C.C. Chang, D. Gorinevsky and S. Lall, "Stability analysis of distributed power generation with droop inverters," IEEE Trans. Power Systems, vol.30, no.6, pp.3295-3303, Nov. 2015.
    [27] Z. Miao, A. Domijan and L. Fan, "Investigation of microgrids with both inverter interfaced and direct AC-Connected distributed energy resources," IEEE Trans. Power Del., vol.26, no.3, pp.1634-1642, July 2011.
    [28] L. Luo and S.V. Dhople, "Spatiotemporal model reduction of inverter-Based islanded microgrids," IEEE Trans. Energy Conversion, vol.29, no.4, pp.823-832, Dec. 2014.
    [29] S. V. Iyer, M. N. Belur, and M. C. Chandorkar, “A generalized computational
    method to determine stability of a multi-inverter microgrid,” IEEE Trans. Power Electron., vol. 25, no. 9, pp. 2420–2432, Sep. 2010.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE