研究生: |
張家豪 Chang, Chia-Hao |
---|---|
論文名稱: |
合成尺寸可調之四面體碘化亞銅奈米晶體並探討其於1,3-偶極環加成反應之催化效率 Formation of Size-Tunable CuI Tetrahedra for Click Reactions |
指導教授: |
黃暄益
Huang, Hsuan-Yi |
口試委員: |
陳貴通
Tan, Kui-Thong 詹益慈 Chan, Yi-Tsu |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 88 |
中文關鍵詞: | 碘化亞銅 、四面體 、奈米晶體 、尺寸可調 、1,3-偶極環加成 |
外文關鍵詞: | CuI, iodide, tetrahedra, size-tunable, click |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們成功合成出尺寸可調控的四面體碘化亞銅奈米晶體,尺寸範圍介於56奈米至645奈米之間。碘化亞銅四面體在掃描式電子顯微鏡及穿透式電子顯微鏡的觀察下,可以確保其形狀邊角完整且表面平滑。在粉末式X射線繞射分析中,我們可以得知其屬於面心立方晶系。此外,在選區繞射圖、X射線能譜圖及X射線光電子能譜圖中,我們可以再次驗證合成出來的奈米粒子為具有{111}晶面的碘化亞銅奈米晶體。在紫外光可見光漫反射光譜圖中,我們可以觀察到碘化亞銅四面體在光學上有尺寸及晶面效應。碘化亞銅四面體的能隙會隨著尺寸愈大而有略微紅位移的現象。相比於大顆的碘化亞銅四面體和市售的碘化亞銅粉末,在1,3-偶極環加成反應中,顯露{111}晶面且尺寸為56奈米的碘化亞銅四面體擁有最佳的有機催化活性,展現出我們所合成的碘化亞銅奈米晶體在有機催化應用上的優勢。
We have successfully synthesized size-tunable tetrahedral CuI nanocrystals ranging from 56 nm to 645 nm. SEM and TEM images show that our tetrahedral nanoparticles have sharp edges and smooth surfaces. PXRD patterns confirm a face-centered cubic lattice for CuI. Moreover, SAED patterns, EDS elemental mapping images, and HRXPS spectra confirm that our synthesized nanocrystals are CuI bound by the {111} facets. UV–vis DRS results reveal that the CuI tetrahedra exhibit size- and facet-dependent optical properties. The band gap of CuI is slightly red-shifted with increasing sizes. In click reaction, {111}-bound 56 nm CuI tetrahedra achieved the best product yield compared to those larger tetrahedra and commercial CuI powder, demonstrating the advantage of using these designed CuI for catalytic applications.
1. Huang, M. H. Facet-Dependent Optical Properties of Semiconductor Nanocrystals. Small 2019, 15, 1804726.
2. Huang, M. H.; Naresh, G.; Chen, H.-S. Facet-Dependent Electrical, Photocatalytic, and Optical Properties of Semiconductor Crystals and Their Implications for Applications. ACS Appl. Mater. Interfaces 2018, 10, 4–15.
3. Huang, M. H.; Madasu, M. Facet-Dependent and Interfacial Plane-Related Photocatalytic Behaviors of Semiconductor Nanocrystals and Heterostructures. Nano Today 2019, 100768.
4. Huang, J.-Y.; Madasu, M.; Huang, M. H. Modified Semiconductor Band Diagrams Constructed from Optical Characterization of Size-Tunable Cu2O Cubes, Octahedra, and Rhombic Dodecahedra. J. Phys. Chem. C 2018, 122, 13027–13033.
5. Thoka, S.; Lee, A.-T.; Huang, M. H. Scalable Synthesis of Size-Tunable Small Cu2O Nanocubes and Octahedra for Facet-Dependent Optical Characterization and Pseudomorphic Conversion to Cu Nanocrystals. ACS Sustain. Chem. Eng. 2019, 7, 10467–10476.
6. Ke, W.-H.; Hsia, C.-F.; Chen, Y.-J.; Huang, M. H. Synthesis of Ultrasmall Cu2O Nanocubes and Octahedra with Tunable Sizes for Facet-Dependent Optical Property Examination. Small 2016, 12, 3530–3534.
7. Hsieh, M.-S.; Su, H.-J.; Hsieh, P.-L.; Chiang, Y.-W.; Huang, M. H. Synthesis of Ag3PO4 Crystals with Tunable Shapes for Facet-Dependent Optical Property, Photocatalytic Activity, and Electrical Conductivity Examinations. ACS Appl. Mater. Interfaces 2017, 9, 39086–39093.
8. Hsieh, P.-L.; Naresh, G.; Huang, Y.-S.; Tsao, C.-W.; Hsu, Y.-J.; Chen, L.-J.; Huang, M. H. Shape-Tunable SrTiO3 Crystals Revealing Facet-Dependent Optical and Photocatalytic Properties. J. Phys. Chem. C 2019, 123, 13664–13671.
9. Lee, A.-T.; Huang, M. H. Synthesis of Size-Tunable Zinc Blende ZnS Nanocrystals. J. Chin. Chem. Soc. 2020, 67, 339–343.
10. Chiu, M.-S.; Lin, C.-C.; Lee, A.-T.; Huang, Y.-C.; Huang, M. H. Aqueous-Phase Synthesis of Size-Tunable PbSe Nanocubes at Room Temperature for Optical Property Characterization. Chem. Eur. J. 2019, 25, 367–372.
11. Huang, Y.-C.; Wu, S.-H.; Hsiao, C.-H.; Lee, A.-T.; Huang, M. H. Mild Synthesis of Size-Tunable CeO2 Octahedra for Band Gap Variation. Chem. Mater. 2020, 32, 2631–2638.
12. Huang, M. H.; Rej, S.; Chiu, C.-Y. Facet-Dependent Optical Properties Revealed through Investigation of Polyhedral Au–Cu2O and Bimetallic Core–Shell Nanocrystals. Small 2015, 11, 2716–2726.
13. Yang, K.-H.; Hsu, S.-C.; Huang, M. H. Facet-Dependent Optical and Photothermal Properties of Au@Ag–Cu2O Core–Shell Nanocrystals. Chem. Mater. 2016, 28, 5140–5146.
14. Tan, C.-S.; Hsu, S.-C.; Ke, W.-H.; Chen, L.-J.; Huang, M. H. Facet-Dependent Electrical Conductivity Properties of Cu2O Crystals. Nano Lett. 2015, 15, 2155–2160.
15. Tan, C.-S.; Chen, Y.-J.; Hsia, C.-F.; Huang, M. H. Facet-Dependent Electrical Conductivity Properties of Silver Oxide Crystals. Chem. Asian J. 2017, 12, 293–297.
16. Tan, C.-S.; Chen, H.-S.; Chiu, C.-Y.; Wu, S.-C.; Chen, L.-J.; Huang, M. H. Facet-Dependent Electrical Conductivity Properties of PbS Nanocrystals. Chem. Mater. 2016, 28, 1574–1580.
17. Tan, C.-S.; Huang, M. H. Metal-like Band Structures of Ultrathin Si {111} and {112} Surface Layers Revealed through Density Functional Theory Calculations. Chem. Eur. J. 2017, 23, 11866–11871.
18. Tan, C.-S.; Hsieh, P.-L.; Chen, L.-J.; Huang, M. H. Silicon Wafers with Facet-Dependent Electrical Conductivity Properties. Angew. Chem. 2017, 129, 15541–15545.
19. Hsieh, P.-L.; Lee, A.-T.; Chen, L.-J.; Huang, M. H. Germanium Wafers Possessing Facet-Dependent Electrical Conductivity Properties. Angew. Chem. Int. Ed. 2018, 57, 16162–16165.
20. Chen, Y.-J.; Chiang, Y.-W.; Huang, M. H. Synthesis of Diverse Ag2O Crystals and Their Facet-Dependent Photocatalytic Activity Examination. ACS Appl. Mater. Interfaces 2016, 8, 19672–19679.
21. Chu, C.-Y.; Huang, M. H. Facet-Dependent Photocatalytic Properties of Cu2O Crystals Probed by Using Electron, Hole and Radical Scavengers. J. Mater. Chem. A 2017, 5, 15116–15123.
22. Yuan, G.-Z.; Hsia, C.-F.; Lin, Z.-W.; Chiang, C.; Chiang, Y.-W.; Huang, M. H. Highly Facet-Dependent Photocatalytic Properties of Cu2O Crystals Established Through the Formation of Au-Decorated Cu2O Heterostructures. Chem. Eur. J. 2016, 22, 12548–12556.
23. Huang, J.-Y.; Hsieh, P.-L.; Naresh, G.; Tsai, H.-Y.; Huang, M. H. Photocatalytic Activity Suppression of CdS Nanoparticle-Decorated Cu2O Octahedra and Rhombic Dodecahedra. J. Phys. Chem. C 2018, 122, 12944–12950.
24. Naresh, G.; Hsieh, P.-L.; Meena, V.; Lee, S.-K.; Chiu, Y.-H.; Madasu, M.; Lee, A.-T.; Tsai, H.-Y.; Lai, T.-H.; Hsu, Y.-J. Facet-Dependent Photocatalytic Behaviors of ZnS-Decorated Cu2O Polyhedra Arising from Tunable Interfacial Band Alignment. ACS Appl. Mater. Interfaces 2018, 11, 3582–3589.
25. Wu, S.-C.; Tan, C.-S.; Huang, M. H. Strong Facet Effects on Interfacial Charge Transfer Revealed Through the Examination of Photocatalytic Activities of Various Cu2O–ZnO Heterostructures. Adv. Funct. Mater. 2017, 27, 1604635.
26. Naresh, G.; Lee, A.-T.; Meena, V.; Satyanarayana, M.; Huang, M. H. Photocatalytic Activity Suppression of Ag3PO4-Deposited Cu2O Octahedra and Rhombic Dodecahedra. J. Phys. Chem. C 2019, 123, 2314–2320.
27. Chanda, K.; Rej, S.; Huang, M. H. Facet-Dependent Catalytic Activity of Cu2O Nanocrystals in the One-Pot Synthesis of 1,2,3-Triazoles by Multicomponent Click Reactions. Chem. Eur. J. 2013, 19, 16036–16043.
28. Chanda, K.; Rej, S.; Huang, M. H. Investigation of Facet Effects on the Catalytic Activity of Cu2O Nanocrystals for Efficient Regioselective Synthesis of 3,5-Disubstituted Isoxazoles. Nanoscale 2013, 5, 12494–12501.
29. Tsai, H.-Y.; Madasu, M.; Huang, M. H. Polyhedral Cu2O Crystals for Diverse Aryl Alkyne Hydroboration Reactions. Chem. Eur. J. 2019, 25, 1300–1303.
30. Madasu, M.; Hsia, C.-F.; Huang, M. H. Au–Cu Core–Shell Nanocube-Catalyzed Click Reactions for Efficient Synthesis of Diverse Triazoles. Nanoscale 2017, 9, 6970–6974.
31. Rej, S.; Chanda, K.; Chiu, C.-Y.; Huang, M. H. Control of Regioselectivity over Gold Nanocrystals of Different Surfaces for the Synthesis of 1,4-Disubstituted Triazole Through the Click Reaction. Chem. Eur. J. 2014, 20, 15991–15997.
32. Tan, C.-S.; Huang, M. H. Density Functional Theory Calculations Revealing Metal-like Band Structures for Ultrathin Germanium (111) and (211) Surface Layers. Chem. Asian J. 2018, 13, 1972–1976.
33. Van Dijken, A.; Makkinje, J.; Meijerink, A. The Influence of Particle Size on the Luminescence Quantum Efficiency of Nanocrystalline ZnO Particles. J. Lumin. 2001, 92, 323–328.
34. Tennakone, K.; Kumara, G.; Kumarasinghe, A.; Wijayantha, K.; Sirimanne, P. A Dye-Sensitized Nano-Porous Solid-State Photovoltaic Cell. Semicond. Sci. Technol. 1995, 10, 1689.
35. Meng, Q.-B.; Takahashi, K.; Zhang, X.-T.; Sutanto, I.; Rao, T.; Sato, O.; Fujishima, A.; Watanabe, H.; Nakamori, T.; Uragami, M. Fabrication of an Efficient Solid-State Dye-Sensitized Solar Cell. Langmuir 2003, 19, 3572–3574.
36. Zhang, X.-T.; Liu, H.-W.; Taguchi, T.; Meng, Q.-B.; Sato, O.; Fujishima, A. Slow Interfacial Charge Recombination in Solid-State Dye-Sensitized Solar Cell Using Al2O3-Coated Nanoporous TiO2 Films. Sol. Energy Mater. Sol. Cells 2004, 81, 197–203.
37. Ma, D.; Xia, C. CuI-Catalyzed Coupling Reaction of β-Amino Acids or Esters with Aryl Halides at Temperature Lower Than That Employed in the Normal Ullmann Reaction. Facile Synthesis of SB-214857. Org. Lett. 2001, 3, 2583–2586.
38. Xu, H.-J.; Liang, Y.-F.; Cai, Z.-Y.; Qi, H.-X.; Yang, C.-Y.; Feng, Y.-S. CuI-Nanoparticles-Catalyzed Selective Synthesis of Phenols, Anilines, and Thiophenols from Aryl Halides in Aqueous Solution. J. Org. Chem. 2011, 76, 2296–2300.
39. Xu, H.-J.; Liang, Y.-F.; Zhou, X.-F.; Feng, Y.-S. Efficient Recyclable CuI-Nanoparticle-Catalyzed S-Arylation of Thiols with Aryl Halides on Water Under Mild Conditions. Org. Biomol. Chem. 2012, 10, 2562–2568.
40. Zhu, W.; Ma, D. Formation of Arylboronates by a CuI-Catalyzed Coupling Reaction of Pinacolborane with Aryl Iodides at Room Temperature. Org. Lett. 2006, 8, 261–263.
41. Mallesham, B.; Rajesh, B. M.; Reddy, P. R.; Srinivas, D.; Trehan, S. Highly Efficient CuI-Catalyzed Coupling of Aryl Bromides with Oxazolidinones Using Buchwald's Protocol: a Short Route to Linezolid and Toloxatone. Org. Lett. 2003, 5, 963–965.
42. Chen, C.-Y.; Dormer, P. G. Synthesis of Benzo[b]furans via CuI-Catalyzed Ring Closure. J. Org. Chem. 2005, 70, 6964–6967.
43. Hohloch, S.; Sarkar, B.; Nauton, L.; Cisnetti, F.; Gautier, A. Are Cu(I)-Mesoionic NHC Carbenes Associated With Nitrogen Additives the Best Cu-Carbene Catalysts for the Azide–Alkyne Click Reaction in Solution? A Case Study. Tetrahedron Lett. 2013, 54, 1808–1812.
44. Albadi, J.; Keshavarz, M.; Shirini, F.; Vafaie-nezhad, M. Copper Iodide Nanoparticles on Poly(4-vinyl pyridine): a New and Efficient Catalyst for Multicomponent Click Synthesis of 1,4-Disubstituted-1,2,3-Triazoles in Water. Catal. Commun. 2012, 27, 17–20.
45. Jiang, Y.; Gao, S.; Li, Z.; Jia, X.; Chen, Y. Cauliflower-Like CuI Nanostructures: Green Synthesis and Applications as Catalyst and Adsorbent. Mater. Sci. Eng., B 2011, 176, 1021–1027.
46. Gao, S.; Yang, J.; Li, Z.; Jia, X.; Chen, Y. Bioinspired Synthesis of Hierarchically Micro/Nano-Structured CuI Tetrahedron and Its Potential Application as Adsorbent for Cd (II) with High Removal Capacity. J. Hazard. Mater. 2012, 211, 55–61.
47. Kozhummal, R.; Yang, Y.; Güder, F.; Küçükbayrak, U. M.; Zacharias, M. Antisolvent Crystallization Approach to Construction of CuI Superstructures with Defined Geometries. ACS Nano 2013, 7, 2820–2828.
48. Grundmann, M.; Schein, F.-L.; Lorenz, M.; Böntgen, T.; Lenzner, J.; von Wenckstern, H. Cuprous Iodide – A p-Type Transparent Semiconductor: History and Novel Applications. Phys. Status Solidi A 2013, 210, 1671–1703.
49. Keen, D.; Hull, S. The High-Temperature Structural Behaviour of Copper(I) Iodide. J. Phys.: Condens. Matter 1995, 7, 5793.
50. Yang, C.; Souchay, D.; Kneiß, M.; Bogner, M.; Wei, H.; Lorenz, M.; Oeckler, O.; Benstetter, G.; Fu, Y. Q.; Grundmann, M. Transparent Flexible Thermoelectric Material Based on Non-Toxic Earth-Abundant p-Type Copper Iodide Thin Film. Nat. Commun. 2017, 8, 16076.
51. Shahbazi, S.; Afshar, S. A Facile, Green, One Pot Synthesis of Cuprous Iodide Nanoparticles Using The Mechanochemical Method. Mater. Lett. 2014, 115, 190–193.
52. Kang, H.; Liu, R.; Chen, K.; Zheng, Y.; Xu, Z. Electrodeposition and Optical Properties of Highly Oriented γ-CuI Thin Films. Electrochim. Acta 2010, 55, 8121–8125.
53. Ves, S.; Glötzel, D.; Cardona, M.; Overhof, H. Pressure Dependence of the Optical Properties and the Band Structure of the Copper and Silver Halides. Phys. Rev. B 1981, 24, 3073.
54. Jeon, K.; Jee, H.; Park, M. J.; Lim, S.; Jeong, C. Characterization of the Copper Iodide Hole-Selective Contact for Silicon Solar Cell Application. Thin Solid Films 2018, 660, 613–617.
55. Stakhira, P.; Cherpak, V.; Volynyuk, D.; Ivastchyshyn, F.; Hotra, Z.; Tataryn, V.; Luka, G. Characteristics of Organic Light Emitting Diodes with Copper Iodide as Injection Layer. Thin Solid Films 2010, 518, 7016–7018.
56. Gogolin, O.; Deiss, J.; Tsitsichvili, E. The Piezobirefringence in Copper Halides. Il Nuovo Cimento D 1989, 11, 1525–1534.
57. Itoh, T.; Iwabuchi, Y.; Kirihara, T. Size-Quantized Excitons in Microcrystals of Cuprous Halides Embedded in Alkali-Halide Matrices. Phys. Status Solidi B 1988, 146, 531–543.
58. Ma, Y.; Gu, M.; Huang, S.; Liu, X.; Liu, B.; Ni, C. Colloidal Synthesis of Uniform CuI Nanoparticles and Their Size Dependent Optical Properties. Mater. Lett. 2013, 100, 166–169.
59. Zhang, L.; Guo, F.; Liu, X. Growth and Shape Evolution of Octahedral CuI Crystal by a SC-Assisted Hydrothermal Method. Mater. Res. Bull. 2006, 41, 905–908.
60. Zhang, B.; Xie, A.; Shen, Y.; Yang, L.; Huang, Y.; Lu, J. Morphogenesis of CuI Nanocrystals by a TSA-Assisted Photochemical Route: Synthesis, Optical Properties, and Growth Mechanism. Eur. J. Inorg. Chem. 2009, 2009, 1376–1384.
61. Sirimanne, P.; Rusop, M.; Shirata, T.; Soga, T.; Jimbo, T. Characterization of Transparent Conducting CuI Thin Films Prepared by Pulse Laser Deposition Technique. Chem. Phys. Lett. 2002, 366, 485–489.
62. Kumar, M.; Bhatt, V.; Nayal, O. S.; Sharma, S.; Kumar, V.; Thakur, M. S.; Kumar, N.; Bal, R.; Singh, B.; Sharma, U. CuI Nanoparticles as Recyclable Heterogeneous Catalysts for C–N Bond Formation Reactions. Catal. Sci. Technol. 2017, 7, 2857–2864.
63. Zhang, H.; Cai, Q.; Ma, D. Amino Acid Promoted CuI-Catalyzed C−N Bond Formation Between Aryl Halides and Amines or N-Containing Heterocycles. J. Org. Chem. 2005, 70, 5164–5173.
64. Zhu, W.; Ma, D. Synthesis of Aryl Sulfones via L-Proline-Promoted CuI-Catalyzed Coupling Reaction of Aryl Halides with Sulfinic Acid Salts. J. Org. Chem. 2005, 70, 2696–2700.
65. Geng, Y.; Liang, A.; Gao, X.; Niu, C.; Li, J.; Zou, D.; Wu, Y.; Wu, Y. CuI-Catalyzed Fluorodesulfurization for the Synthesis of Monofluoromethyl Aryl Ethers. J. Org. Chem. 2017, 82, 8604–8610.
66. Li, J.-H.; Li, J.-L.; Wang, D.-P.; Pi, S.-F.; Xie, Y.-X.; Zhang, M.-B.; Hu, X.-C. CuI-Catalyzed Suzuki−Miyaura and Sonogashira Cross-Coupling Reactions Using DABCO as Ligand. J. Org. Chem. 2007, 72, 2053–2057.
67. Saadat, S.; Nazari, S.; Afshari, M.; Shahabi, M.; Keshavarz, M. Copper(I) Iodide Nanoparticles on Polyaniline as a Green, Recoverable and Reusable Catalyst for Multicomponent Click Synthesis of 1,4-Disubstituted-1H-1,2,3-Triazoles. Orient. J. Chem. 2015, 31, 1005–1012.
68. M Heravi, M.; Hamidi, H.; Zadsirjan, V. Recent Applications of Click Reaction in the Syntheses of 1,2,3-Triazoles. Curr. Org. Synth. 2014, 11, 647–675.
69. Girard, C.; Önen, E.; Aufort, M.; Beauvière, S.; Samson, E.; Herscovici, J. Reusable Polymer-Supported Catalyst for the [3+2] Huisgen Cycloaddition in Automation Protocols. Org. Lett. 2006, 8, 1689–1692.
70. Bock, V. D.; Hiemstra, H.; Van Maarseveen, J. H. CuI-Catalyzed Alkyne–Azide “Click” Cycloadditions from a Mechanistic and Synthetic Perspective. Eur. J. Org. Chem. 2006, 2006, 51–68.
71. Safaei-Ghomi, J.; Ziarati, A.; Teymuri, R. CuI Nanoparticles as New, Efficient and Reusable Catalyst for the One-Pot Synthesis of 1,4-Dihydropyridines. Bull. Korean Chem. Soc 2012, 33, 2679–2682.
72. Nugent, T. C.; El‐Shazly, M. Chiral Amine Synthesis–Recent Developments and Trends for Enamide Reduction, Reductive Amination, and Imine Reduction. Adv. Synth. Catal. 2010, 352, 753–819.
73. Lindley, J. Tetrahedron Report Number 163: Copper Assisted Nucleophilic Substitution of Aryl Halogen. Tetrahedron 1984, 40, 1433–1456.
74. Nakayama, H.; Kanaoka, Y. Chemical Identification of Binding Sites for Calcium Channel Antagonists. Heterocycles 1996, 42, 901–909.
75. Sorkin, E.; Clissold, S.; Brogden, R. Nifedipine: A Review of Its Pharmacodynamic and Pharmacokinetic Properties, and Therapeutic Efficacy, in Ischaemic Heart Disease, Hypertension and Related Cardiovascular Disorders. Drugs 1985, 30, 182–274.
76. Kolb, H. C.; Sharpless, K. B. The Growing Impact of Click Chemistry on Drug Discovery. Drug Discov. Today 2003, 8, 1128–1137.
77. Horne, W. S.; Stout, C. D.; Ghadiri, M. R. A Heterocyclic Peptide Nanotube. J. Am. Chem. Soc. 2003, 125, 9372–9376.
78. Horne, W. S.; Yadav, M. K.; Stout, C. D.; Ghadiri, M. R. Heterocyclic Peptide Backbone Modifications in an α-Helical Coiled Coil. J. Am. Chem. Soc. 2004, 126, 15366–15367.
79. Alvarez, R.; Velazquez, S.; San-Felix, A.; Aquaro, S.; Clercq, E. D.; Perno, C.-F.; Karlsson, A.; Balzarini, J.; Camarasa, M. J. 1,2,3-Triazole-[2,5-Bis-O-(Tert-Butyldimethylsilyl)-β-D-Ribofuranosyl]-3'-Spiro-5''-(4''-Amino-1'',2''-Oxathiole 2'',2''-Dioxide) (TSAO) Analogs: Synthesis and Anti-HIV-1 Activity. J. Med. Chem. 1994, 37, 4185–4194.
80. Velazquez, S.; Alvarez, R.; Perez, C.; Gago, F.; De Clercq, E.; Balzarini, J.; Camarasa, M. Regiospecific Synthesis and Anti-Human Immunodeficiency Virus Activity of Novel 5-Substituted N-Alkylcarbamoyl and N,N-Dialkyl Carbamoyl 1,2,3-triazole-TSAO analogues. Antiviral Chem. Chemother. 1998, 9, 481–489.
81. Genin, M. J.; Allwine, D. A.; Anderson, D. J.; Barbachyn, M. R.; Emmert, D. E.; Garmon, S. A.; Graber, D. R.; Grega, K. C.; Hester, J. B.; Hutchinson, D. K. Substituent Effects on the Antibacterial Activity of Nitrogen−Carbon-Linked (Azolylphenyl)oxazolidinones with Expanded Activity Against the Fastidious Gram-Negative Organisms Haemophilus influenzae and Moraxella catarrhalis. J. Med. Chem. 2000, 43, 953–970.
82. Meldal, M.; Tornøe, C. W. Cu-Catalyzed Azide−Alkyne Cycloaddition. Chem. Rev. 2008, 108, 2952–3015.
83. Tanaka, K.; Kageyama, C.; Fukase, K. Acceleration of Cu(I)-Mediated Huisgen 1,3-dipolar Cycloaddition by Histidine Derivatives. Tetrahedron Lett. 2007, 48, 6475–6479.
84. Belian, M. F.; da Silva, M. T.; de Andrade Alves, A.; de Oliveira, R. N.; da Silva, W. E. Advantages of the Use of Heterogeneous Catalyst for Huisgen Cycloaddition Reaction: Synthesis and Application of New Metalorganic Material Capable of Regeneration and Reuse. Ecletica Quim J. 2018, 43, 39–47.
85. Biesinger, M. C. Advanced Analysis of Copper X-ray Photoelectron Spectra. Surf. Interface Anal. 2017, 49, 1325–1334.
86. Wu, J. K.; Lyu, L. M.; Liao, C. W.; Wang, Y. N.; Huang, M. H. Fast Synthesis of PbS Nanocrystals in Aqueous Solution with Shape Evolution from Cubic to Octahedral Structures and Their Assembled Structures. Chem. Eur. J. 2012, 18, 14473–14478.
87. Chen, H.-S.; Wu, S.-C.; Huang, M. H. Direct Synthesis of Size-Tunable PbS Nanocubes and Octahedra and the pH Effect on Crystal Shape Control. Dalton Trans. 2015, 44, 15088–15094.
88. Maity, P.; Takano, S.; Yamazoe, S.; Wakabayashi, T.; Tsukuda, T. Binding Motif of Terminal Alkynes on Gold Clusters. J. Am. Chem. Soc. 2013, 135, 9450–9457.
89. Chen, T.-N.; Kao, J.-C.; Zhong, X.-Y.; Chan, S.-J.; Patra, A. S.; Lo, Y.-C.; Huang, M. H. Facet-Specific Photocatalytic Activity Enhancement of Cu2O Polyhedra Functionalized with 4-Ethynylanaline Resulting from Band Structure Tuning. ACS Cent. Sci. 2020, 984–994.