簡易檢索 / 詳目顯示

研究生: 陳冠喬
Kuan-Chiao Chen
論文名稱: 藉表面粗糙度輔助成長氧化鋅奈米線及其發光特性研究
Surface Roughness Assisted Growth and Luminescent Properties of Zinc Oxide Nanowires
指導教授: 林鶴南
Heh-Nan Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 55
中文關鍵詞: Surface RoughnessZinc Oxide NanowiresPhotoluminescent
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以熱蒸鍍法成功地在氧化鋁、矽基板以及玻璃上大面積垂直成長氧化鋅奈米線,此製程無需添加金屬催化劑或使用任何晶種層,而是藉著增加基板表面粗糙度並結合汽-固成長機制來合成氧化鋅奈米線。我們使用鋼針筆輕劃、砂紙機械研磨以及化學蝕刻等簡單方式來增加基板表面粗糙度。利用增加表面粗糙度的方法,大量提供氧化鋅分子異質成核的位置,再配合適當的成長參數,得以合成具有垂直形貌的氧化鋅奈米線。本研究和一般的合成方法相比較,具有製程簡單,無催化劑帶來的污染,不需另外鍍上晶種層且適合在多種基板上成長等優點。另外利用螢光光譜儀觀察PL光譜,在紫外光波段(384 nm)、藍綠光波段(481 nm)及綠光波段(521 nm)有發光現象,並藉著在大氣壓下退火,使藍綠光波段的強度下降,間接證明造成此波段的原因為氧缺陷所致。


    This study reports the successful growth of large-scale vertically aligned ZnO nanowires on sapphire, silicon, and glass substrate by direct thermal evaporation. In this processing, neither adding metal catalysts nor the usage of seed layers, we fabricate ZnO nanowires via a surface roughness assisted vapor-solid mechanism. Simple processing steps including steel needle scratching, mechanical polishing with sand-paper, and chemical etching have been utilized to improve surface roughness of substrates. By this method, the heterogeneous nucleation sites have been provided largely; as the growth parameters are well-controlled, the synthesis of vertically aligned ZnO nanowires can be achieved. Compared with other methods, this study has some advantages like simple processing, no catalyst contamination, no seed-layer usage and suitable for various types of substrates. On the other hand, the luminescence spectrometer was applied to measure the PL properties of ZnO nanowires. Three obvious peaks in UV (384 nm), blue-green (481 nm), and green (521 nm) region have been observed. Furthermore, as the nanowires have been annealed in atmosphere, the intensity of blue-green peak dropped, which can be the circumstantial evidence of oxygen vancancies.

    第一章 簡介 1-1前言 1-2 實驗動機 第二章 文獻回顧 2-1 氧化鋅晶體結構 2-2 氧化鋅的磊晶成長 2-3 氧化鋅奈米線成長機制 2-3-1 VLS 機制 2-3-2 VS 機制 2-4 氧化鋅奈米線合成方法 2-4-1 熱蒸鍍法(Thermal Evaporation) 2-4-2 金屬有機化學氣相沉積法(MOCVD) 2-4-3 水熱法(Hydrothermal Method) 2-4-4 模板法(Template-assisted)與原子力顯微術選區成長 2-4-5 晶種層輔助成長(Seed-layer assisted growth) 2-4-6 晶種層表面粗糙度的影響 2-5 氧化鋅奈米線發光機制 2-5-1 紫外光波段發光行為 2-5-2 缺陷發光行為 18 2-5-3 退火對缺陷發光的影響 2-6 氧化鋅奈米線的應用 2-6-1 發光二極體 2-6-2 染料敏化太陽能電池 2-6-3 紫外光雷射 2-6-4 葡萄糖生物感測器 2-6-5 氣體感測器 第三章 實驗儀器與步驟 3-1 實驗儀器 3-2 實驗步驟 3-2-1 試片製作 3-2-2 奈米線成長製程 3-2-3 分析與量測 3-2-4 實驗流程圖 第四章 結果與討論 4-1 表面粗糙度輔助奈米線成長結果 4-1-1機械力輕刮(mechanical scratching) 4-1-2 EDS成分分析 4-1-3 機械力拋光(mechanical polishing) 4-1-4 化學蝕刻(chemical etching) 4-2 氧化鋅奈米線成長討論 4-2-1 奈米線的直徑變化 4-2-2 晶種層的自然形成 4-2-3 成長機制探討 4-2-4 長尺寸氧化鋅奈米線 4-3 電子顯微鏡(TEM)分析 4-4 光致激發光譜分析 第五章 結論 第六章 參考文獻

    [1] Z. L. Wang, J. Phys.: Condens. Matter 2004, 16, 829.
    [2] Z. L. Wang and J. Song, Science 2006, 312, 242.
    [3] R. K□nenkamp, R. C. Word, and C. Schlegel, Appl. Phys. Lett. 2004, 85, 6004.
    [4] X. Han, G. Wang, Q. Wang, L. Cao, R. Liu, B. Zou, and J. G. Hou, Appl. Phys. Lett. 2005, 86, 223106.
    [5] C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh, and H. J. Lee, Appl. Phys. Lett. 2002, 81, 3648.
    [6] J. B. Baxter, A. M. Walker, K. V. Ommering, and E. S. Aydil, Nanotechnology 2006, 17, 304.
    [7] J. X. Wang, X. W. Sun, A. Wei, Y. Lei, X. P. Cai, C. M. Li, and Z. L. Dong, Appl. Phys. Lett. 2006, 88, 233106.
    [8] Z. Fan, and J. G. Lu, Proc. IEEE 2005, Nagoya, Japan.
    [9] B. D. Yao, Y. F. Chan, and N. Wang, Appl. Phys. Lett. 2002, 81, 757.
    [10] W. I. Park, D. H. Kim, S. W. Jung, and G. C. Yi, Appl. Phys. Lett. 2002, 80, 4232.
    [11] Y. Zhao and Y. U. Kwon, Chem. Lett. 2004, 33, 1578.
    [12] H. Chik, J. Liang, S. G. Cloutier, N. Kouklin, and J. M. Xu, Appl. Phys. Lett. 2004, 84, 3376.
    [13] R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 1964, 4, 89.
    [14] H. J. Fan, F. Fleischer, W. Lee, K. Nielsch, R. Scholz, M. Zacharias, U. G□sele, A. Dadgar, and A. Krost, Superlattice. Microst. 2004, 36, 95.
    [15] P. Yang and C. M. Lieber, J. Mater. Res. 1997, 12, 2981.
    [16] W. Lee, M. C. Jeong, and J. M. Myoung, Acta Mater. 2004, 52, 3949.
    [17] G. C. Yi, C. Wang and W. II Park, Semicond. Sci. Technol. 2005, 20, 22.
    [18] T. F. Kuo and J. Xu, J. Vac. Sci. Technol. B 2006, 24, 1925.
    [19] J. H. He, J. H. Hsu, C. W. Wang, H. N. Lin, L. J. Chen, and Z. L. Wang, J. Phys. Chem. B 2006, 110, 50.
    [20] L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, Nano Lett. 2005, 5, 1231.
    [21] A. B. Djurišić and Y. H. Leung, Small 2006, 2, 944.
    [22] R. Wu, Y. Yang, S. Cong, Z. Wu, C. Xie, H. Usui, K. Kawaguchi, and N. Koshizaki, Chem. Phys. Lett. 2005, 406, 457.
    [23] S. Mahamuni, K. Borgohan, B. S. Bendre, V. J. Leppert and S. H. Risbud, J. Appl. Phys. 1999, 85, 2861.
    [24] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, J. Appl. Phys. 1996, 79, 7983.
    [25] W. Cheng, P. Wu, X. Zou, and T. Xiao, J. Appl. Phys. 2006, 100, 054311.
    [26] Y. Du, S. Han, W. Jin, C. Zhou, and A. F. Levi, Appl. Phys. Lett. 2003, 83, 996.
    [27] M. Gr□tzel, J. Photoch. Photobio. C 2003, 4, 145.
    [28] J. H. Choy, E. S. Jang, J. H. Won, J. H. Chung, D. J. Jang, and Y. W. Kim, Adv. Mater. 2003, 15, 1911.
    [29] C. Kittel, Introduction to Solid State Physics 1996, 7th Ed., 201.
    [30] S. H. Park, S. Y. Seo, S. H. Kim, and S. W. Han, Appl. Phys. Lett. 2006, 88, 251903.
    [31] R. Hill, 陳文照, 曾春風, 林淳杰, 劉偉隆, 物理冶金 2002, 3rd Ed., 15-17, 全華圖書公司.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE