簡易檢索 / 詳目顯示

研究生: 郭俊廷
Chun-Ting Kuo
論文名稱: 銅-胺基酸錯合物活化H2O2之動力學與反應機制探討
Kinetics and mechanism of activation of hydrogen peroxide by copper(II) amino acid complexes
指導教授: 吳劍侯
Chien-Hou Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 49
中文關鍵詞: 胺基酸過氧化氫
外文關鍵詞: copper, amino acid, H2O2
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用Cu(II)與20種自然胺基酸與β-Ala 形成的銅錯合物,於25°C的磷酸鹽溶液中活化過氧化氫,並偵測反應中2-甲喹啉藍(QB)的初始氧化速率來探討銅錯合物活化過氧化氫效率。爲了確認銅物種的影響,實驗中探討許多參數:pH、離子強度、溫度以及Cu(II)、胺基酸和過氧化氫的濃度。QB的氧化速率隨銅胺基酸錯合物濃度成一級反應,隨過氧化氫濃度成多級反應,這符合Michaelis-Menten動力方程式的描述。在20種胺基酸與β-Ala中,Cu-His錯合物有最強的活性。不同胺基酸的催化活性差異可達500倍,而此差異可能是由於胺基酸的結構與官能基影響過氧錯合物的形成。由實驗中發現1:1結合的銅胺基酸錯合物(CuL)是主要的活性催化物。最後藉由一價銅與兩價銅錯合物的實驗結果以及產物分析,推導出過氧化氫活化的反應機制。


    Activation of hydrogen peroxide by Cu(II) complexes of 20 native amino acids (L) and β-Ala has been studied by measuring the initial oxidation rate of quinaldine blue(QB) in aqueous phosphate media at 25°C. System parameters such as pH, ionic strength, temperature and concentrations of Cu(II), amino acids, and hydrogen peroxide are examined to characterize the effects of Cu(II) speciation. The oxidation rate of QB is first order in Cu(II)-amino acid complexes and variable order in hydrogen peroxide, which can be explained in terms of Michaelis-Menten kinetics. Among 20 native amino acids and β-Ala, Cu(II)-histidine complex could more easily activate hydrogen peroxide than any other Cu(II)-amino acid complexes. The catalytic activities vary by about 500-fold and are discussed in terms of the ligand structure and function group, which affects the formation of lignad-Cu(II)-peroxide complexes. The catalytic activities of Cu(II) complexes with all 20 amino acids demonstrate that the 1:1 Cu(II) complexes (CuL) are the dominant species forming the active copper complex catalyst. Based on the experimental results of Cu(I) and Cu(II) complex systems and product measurement, a peroxide activation mechanism is proposed .

    總目錄 中文摘要……………………………………………………………………………I 英文摘要……………………………………………………………………………II 總目錄………………………………………………………………………………III 圖目錄………………………………………………………………………………V 表目錄………………………………………………………………………………VI 第一章 引言..……………………………………………………………………….1 1.1 簡介………………………………………………………………………..1 1.2 研究目的與動機…………………………………………………………..1 第二章 文獻回顧……..…………………………………………………………….1 2.1 活化H2O2之研究………………………………………………………....1 2.1.1 活化H2O2之方法………………………………………………….1 2.1.2 活化H2O2之應用………………………………………………….2 2.1.3活化H2O2之反應機制……………………………………………..2 2.2 銅的介紹…………………………………………………………………...2 2.3 胺基酸的介紹……………………………………………………………...3 2.4 Quinaldine blue的介紹…………………………………………………….5 2.5 實驗原理介紹………………………………...……………………………6 2.5.1 金屬錯合物活化H2O2………………..……………………………6 2.5.2 分子吸收光譜………………………………………………………6 2.5.3 銅與不同胺基酸的鍵結情況與物種分配…………………………7 2.5.4 銅胺基酸錯合物活化H2O2反應動力學…………………………..7 2.5.5 電子順磁共振(EPR)原理…………………………………………..9 第三章 實驗方法……………………………………………………………………9 3.1 實驗裝置…………………………………………………………………...9 3.1.1 紫外可見光譜儀(UV-Vis spectrometer)……………………………9 3.1.2 離子層析系統(Ion Chromatography system)………………………9 3.1.3 pH meter……………………………………………………………...9 3.1.4 溶氧電極…………………………………………………………...10 3.1.5電子順磁共振儀(EPR)……………………………………………..10 3.2 實驗計算軟體……………………………………………………………..10 3.2.1 MINTEQ…………………………………………………………….10 3.2.2 NIST46.4 熱力學資料庫………………………………………..…12 3.3 實驗藥品…………………………………………………………………..12 3.4 實驗流程…………………………………………………………………13 3.4.1 母液配製………………………………………………………….13 3.4.2 樣品配製………………………………………………………….13 3.4.3 使用UV/Vis觀察反應速率……………………………………...13 3.4.4 初始速率決定方法……………………………………………….14 3.4.5 以離子層析儀(IC)量測溶液中NH4+濃度……………………….16 3.4.6 一價銅的量測…………………………………………………….16 第四章 結果與討論……………………………………………………………….17 4.1 活化H2O2要素的確定 ………………………………………………....17 4.2 離子強度影響……………………………………………………………18 4.3 pH影響……………………………………………………………………18 4.4 溫度影響…………………………………………………………………19 4.5 銅錯合物物種分布之影響………………………………………….…...21 4.6 催化物濃度之影響………………………………………………………22 4.7 H2O2濃度之影響…………………………………………………………22 4.8 活化反應之動力學常數探討……………………………………………23 4.9 再現性測試………………………………………………………………27 4.10 反應機制推導…………………………………………………………..27 4.10.1 氧的量測………………………………………………………...27 4.10.2 一價銅的量測…………………………………………………...28 4.10.3 一價銅反應性與EDTA影響…………………………………...29 4.10.4 自由基判斷—自由基清除劑之添加…………………………...30 4.10.5 自由基判斷—EPR光譜圖………………………………………31 4.10.6 銨離子的量測……………………………………………………32 4.10.7 機制推導…………………………………………………………33 第五章 結論………………………………………………………………………..34 第六章 未來展望…………………………………………………………………..35 參考文獻……………………………………………………………………………36 附錄………………………………………………………………………………….41 附錄一 20種胺基酸與β-Ala的銅物種分布對活化反應的影響……………….41 附錄二 附錄二. 20種胺基酸與β-Ala的kcat,Km數據圖…………………....45 圖目錄 圖2-1 QB化學結構圖………………………………………………………………5 圖2-2 銅胺基酸錯合物活化H2O2基本反應圖…………………………………...6 圖2-3 Michaelis-Menton equation曲線圖………………………………………….8 圖3-1 Minteq模擬不同pH值環境下改變Gly濃度對銅物種分布之影響………11 圖3-2 Nist46.4中Cu與Alanine 之錯合常數……………………………………..12 圖3-3 QB分解光譜圖……………………………………………………………….14 圖3-4 QB吸收值衰減圖……………………………………………………………15 圖3-5 QB衰減初始速率決定圖……………………………………………………15 圖3-6 Cu(I)加Bathocuproine於484 nm出現吸收峰……………………………..16 圖4-1 不同條件下QB吸收值變化圖……………………………………………..17 圖4-2 離子強度對反應效率影響圖………………………………………………..18 圖4-3 pH對反應效率影響圖……………………………………………………….19 圖4-4 由銅胺基酸錯合物進行H2O2活化反應之活化能曲線圖…………………20 圖4-5 銅胺基酸一配位錯合物CuL與H2O2活化效率比較圖……………………21 圖4-6 不同CuL濃度對QB分解效率比較圖……………………………………..22 圖4-7 不同H2O2濃度對QB分解效率比較圖…………………………………….23 圖4-8 [1/ H2O2]對應([CuL]/rate)圖....…………………………………………….24 圖4-9 反應期間氧氣濃度變化圖…………………………………………………..28 圖4-10 反應期間一價銅變化圖……………………………………………………29 圖4-11 添加硫尿對反應速率影響圖………………………………………………31 圖4-12 Fe(II)與Cu-α-Ala活化H2O2系統的EPR光譜………………………….32 圖4-13 銅胺基酸錯合物活化H2O2分解染劑之機制圖………………………….34 表目錄 表2-1 胺基酸基本性質介紹………………………………………………………..3 表3-1 離子層析儀參數……………………………………………………………..16 表4-1 各種銅胺基酸錯合物kcat與Km排序…………………..…………………26 表4-2 Cu(II)-α-Ala與Cu(I)-α-Ala反應速率比較………………………………….30 表4-3 自由基清除劑添加影響……………………………………………………

    Ahner, B. A., Lee, J. G., Price, N. M. and Morel, F. M. M. (1998). Phytochelatin concentration in the equatorial Pacific. Deep-Sea Res. I 45, 1779-1796.
    Akagawa, M. and Suyama, K. (2002). Oxidative deamination by hydrogen peroxide in the presence of metals. Free Radical Research, 36, 13-21.
    Ali, F. E., Barnham, K. J., Barrow, C. J. and Separovic, F. (2004). Metal catalyzed oxidation of tyrosine residues by different oxidation systems of copper/hydrogen peroxide. Journal of Inorganic Biochemistry 98, 173-184.
    Baldrian, P., Cajthaml, T., Merhautova, V., Gabriel, J., Nerud, F., Stopka, P., Hruby, M. and Benes, M. J. (2005). Degradation of polycyclic aromatic hydrocarbons by hydrogen peroxide catalyzed by heterogeneous polymeric metal chelates. Applied Catalysis B: Environmental 59, 267-274.
    Benedito, F. L., Nakagaki, S., Saczk, A. A., Peralta-Zamora, P. G. and Costa, C. M. M. (2003). Study of metalloporphyrin covalently bound to silica as catalyst in the ortho-dianisidine oxidation. Applied Catalysis A 250, 1-11.
    Cai, R., Kubota, Y. and Fujishima, A. (2003). Effect of copper ions on the formation of hydrogen peroxide from photocatalytic titanium dioxide particles. J. Catalysis 219, 214-218.
    Chen, L.-H., Liu, L.-Z. and Shen, H.-X. (2003). Mn(II)-sodium dodecyl sulphate complex mimic enzyme-catalyzed fluorescence quenching of Pyronine B by hydrogen peroxide. Analytica Chimica Acta 480, 143-150.
    EL-Gahami, M. A., Khafagy, Z. A., Ali, A. M. M. and Ismail, N. M. (2004). Thermal, spectroscopic, cyclic voltammetric, and biological activity studies of cobalt(II), nickel(II), and copper(II) complexes of dicarboxylic amino acids and 8-hydroxyquinoline. Journal of Inorganic and Organometallic Polymers 14, 117-129.
    Fayolle, M. and Romagna, F. (1997). Copper CMP evaluation: planarization issues. Microelectronic Engineering 37/38, 135-141.

    Felmy, A. R., Girvin, D. C. and Jenne, E. A. (1984). A computer program for calculating aqueous geochemical equilibria. U. S. Environmental Protect Agency, Athens, GA, EPA-600/3-84-032.
    Gabriel, J., Baldrian, P., Verma, P., Cajthaml, T., Merhautová, V., Eichlerová, I., Stoytchev, I., Trnka, T., Stopka, P. and Nerud, F. (2004). Degradation of BTEX and PAHs by Co(II) and Cu(II)-based radical-generating systems. Applied Catalysis B: Environmental 51, 159-164.
    Gorantla, V. R. K., Matijevic, E. and Babu, S. V. (2005). Amino acids as complexing agents in chemical-mechanical planarization of copper. Chem. Mater. 17, 2076-2080.
    Hariharaputhiran, M., Zhang, J., Ramarajan, S., Keleher, J. J. and Li, Y. (2000). Hydroxyl radical formation in H2O2-amino acid mixtures and chemical mechanical polishing of copper. J. Electrochem. Soc. 147, 3820-3826.
    Hayase, K. and Zeep, R. G. (1991). Photolysis of copper(II)-amino acid complexes in water. Environ. Sci. Technol. 25, 1273-1279.
    Kato, Y., Kitamoto, N., Kawai, Y. and Osawa, T. (2001). The hydrogen peroxide/copper ion system, but not other metal-catalyzed oxidation systems, produces protein-bound dityrosine. Free Radical Biology & Medicine, 31, 624-632.
    Lapenna, D., Ciofani, G., Pierdomenico, S. D., Giamberardino, M. A. and Cuccurullo, F. (2005). Copper, zinc superoxide dismutase plus hydrogen peroxide: a catalytic system for human lipoprotein oxidation. FEBS Letters 579, 245-250.
    Lekchiri, A., Brighli, M., Methenitis, C., Morcellet, J. and Morcellet, M. (1991). Complexation of a polyelectrolyte derived from glutamic acid with copper(II).Catalase-like activity of the complexes. Journal of Inorganic Biochemistry 44, 229-238.
    Lekchiri, A., Castellano, A., Morcelle, J. and Morcellet, M. (1991). Copper of complexes and catalyse-like activity a polyelectrolyte derived from aspartic acid. Eur. Polym. J. 27, 1271-1278.
    Lin, T.-Y. and Wu, C.-H. (2005). Activation of hydrogen peroxide in copper(II)/amino acid/H2O2 systems: effects of pH and copper speciation. Journal of Catalysis 232, 117-126.
    Meng, M.,Chane, T-L., Sun, Y-J. and Hsiao, C-D. (1999). Probing the location and function of the conserved histidine residue of phosphoglucose isomerase by using an active site directed inhibitor N-bromoacetylethanolamine phosphate. Protein Science 8, 2438-2443.
    Moffett, J. W. and Zika, R. G. (1987). Photochemistry of copper complexes in seawater. Environ. Aqua. Sys Chap9.
    Moffett, J. W. and Zika, R. G. (1987). Reaction kinetics of hydrogen peroxide with copper and iron in seawater. Environ. Sci. Technol. 21, 804-810.
    Nerud, F., Baldrain, P., Gabriel, J. and Ogbeifun, D. (2001). Decolorization of synthetic dyes by the Fenton reagent and the Cu/pyridine/H2O2 system. Chemosphere 44, 957-961.
    Nunn, C. C., Schechter, R. S. and Wade, W. H. (1982). Visual evidence regarding the nature of hemimicelles through surface solubilization of pinacyanol chloride. J. Phys. Chem. 86, 3271-3272.
    Panda, A. K. and Chakraborty, A. K. (1997). Studies on the interaction of bacterial lipopolysaccharide with cationic dyes by absorbance and fluorescence spectroscopy. J. Photochemistry and Photobiology A: Chemistry 111, 157-162.
    Park, C. and Raines, R. T. (2001). Quantitative Analysis of the Effect of Salt Concentration on Enzymatic Catalysis. J. Am. Chem. Soc. 123, 11472-11479.
    Pecci, L., Montefoschi, G. and Cavallini, D. (1997). Some new details of the copper-hydrogen peroxide interaction. Biochemical and Biophysical Research Communications 235, 264-267.
    Pelmenschikov, V. and Siegbahn, P. E. M. (2005). Copper-zinc superoxide dismutase: Theoretical insights into the catalytic mechanism. Inorganic Chmistry 44, 3311-3320.
    Perez-Benito, J. F. (2004). Reaction pathways in the decomposition of hydrogen peroxide catalyzed by copper(II). Journal of Inorganic Biochemistry 98, 430-438.

    Robbins, M. H. and Drago, R. S. (1997). Activation of hydrogen peroxide for oxidation by copper(II) complexes. J. Catalysis 170, 295-303.
    Rorabacher, D. B. (2004). Electron Transfer by Copper Centers. Chem. Rev. 104, 651-697.
    Sabate, R., Gallardo, M. and Estelrich, J. (2001). Location of pinacyanol in micellar solutions of n-alkyl trimethylammonium bromide surfactants. Journal of Colloid and Interface Science 233, 205-210.
    Sabate, R., Gallardo, M., Maza, A. d. l. and Estelrich, J. (2001). A Spectroscopy Study of the Interaction of Pinacyanol with n-dodecyltrimethylammonium Bromide Micelles. Langmuir 17, 6433-6437.
    Sabate´, R. and Estelrich, J. (2003). Pinacyanol as effective probe of fibrillar beta-Amyloid peptide: Comparative study with congo red. Biopolymers (Biospectroscopy) 72, 455-463.
    Salem, I. A. and El-Maazawi, M. S. (2000). Kinetics and mechanism of color removal of methylene blue with hydrogen peroxide catalyzed by some supported alumina surfaces. Chemosphere 41, 1173-1180.
    Salem, M. A., Salem, I. A. and Gemeay, A. H. (1994). Kinetics and mechanism of H2O2 decomposition by Cu(II)-,Co(II)-,Fe(III)-amine complexes on the surface of silica-alumina (25% Al2O3). International Journal of Chemical Kinetics 26, 1055-1061.
    Segal, S. R. and Suib, S. L. (1997). Decomposition of pinacyanol chloride dye using several manganese oxide catalysts. Chem. Mater. 9, 2526-2532.
    Shah, V., Verma, P., Stopka, P., Gabriel, J., Baldrian, P. and Nerud, F. (2003). Decolorization of dyes with copper(II)/organic acid/hydrogen peroxide systems. Applied Catalysis B: Environmental 46, 287-292.
    Smith, A. E., Martell, R. M. and Motekaitis, R. J. (1995). NIST critically selected stability constants of metal complexes database, ver. 4.0. NIST Standard Reference Database 46.
    Stiff, M. J. (1971). Water Research 5, 585-599.
    Stone, D. L., Smith, D. K. and Whitwood, A. C. (2004). Copper amino-acid complexes - towards encapsulated metal centres. Polyhedron 23, 1709-1707.
    Sykora, J. (1997). Photochemistry of copper complexes and their environment aspects. Coor. Chem. Rev 159, 95-108.
    Verma, P., Baldrian, P. and Nerud, F. (2003). Decolorization of structurally different synthetic dyes using cobalt(II)/ascorbic acid/hydrogen peroxide system. Chemosphere 50, 975-979.

    Ueda, J.-I., Ozawa, T., Miyazaki, M. and Fujiwara, Y. (1994) Activation of hydrogen peroxide by copper(II) complexes with some Histidine-containing peptides and their SOD-like activities. Journal of Inorganic Biochemistry 55, 123-130.
    Verma, P., Shah, V., Baldrian, P., Gabriel, J., Stopka, P., Trnka, T. and Nerud, F. (2004). Decolorization of synthetic dyes using a copper complex with glucaric acid. Chemosphere 54, 291-295.

    林景方, (2004) . Electrochemical investigations of copper/amino-acid complexes by cycle voltammetry.

    許朝昇, (2003). Experimental determination of copper(I) quantum yield for copper(II)-amino acid complexes in aqueous solution.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE