簡易檢索 / 詳目顯示

研究生: 簡嘉宏
Chien, Chia-Hung
論文名稱: 銀鑲嵌氧化鋁矽奈米複合結構之退火及抗菌特性研究
Silver-Embedded on Aluminum/Silica Nanocomposite : Annealing and Antibacterial Properties
指導教授: 施漢章
Shih, Han C.
葉均蔚
Yeh, Jien-Wei
口試委員: 施漢章
葉均蔚
劉家銘
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 74
中文關鍵詞: 銀奈米抗菌退火氧化鋁矽
外文關鍵詞: Silver nanoparticles, Antibacterial, Annealing, Aluminum/Silica
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究成功將銀奈米粒子與銀離子在經過溶凝膠法(sol-gel) 反應
    之後均勻嵌載氧化矽鋁的非晶結構表面及內部,其中鋁原子的導入扮
    演關鍵性的角色,為銀離子(Ag+) 均勻分佈在整體二氧化矽載體的主
    要原因。[AlO4]− 四面體結構和Ag+ 的交互作用導致Ag+ 藉著庫倫靜電力散佈在主體結構,進而完整呈現Ag+ 嵌載在Al-O-Si 鍵結狀態的結構(樣品A)。
    為了驗證鋁原子的重要性,額外對照組樣品(樣品B) 的製備方法
    和條件和氧化矽鋁奈米微球完全相同,僅移除含水硝酸鋁的前驅物添
    加步驟,確保合成產物不含鋁成分。擁有此特殊結構的樣品之後經由
    氧氣氣氛的退火處理保持溫度範圍區間介於250-1000◦C。
    銀原子和一價銀離子在表面的比例是不斷隨著退火條件而改變,
    原則上可劃分成三階段演變態,低溫銀粒子率先還原在表面,當溫度
    漸升銀原子滿足離子化條件隨即轉換成離子態,更高溫甚至可能有液
    化與脫落的現象發生。
    XPS 的分析將更具體詮釋表面銀原子和銀離子含量數據化的結果,
    由計算分峰曲線下的面積比例得知含量。為了舉出銀離子存在的證明,將用氧氣退火至1000◦C 的樣品A 和樣品B,實行二階段N2 混H2 的氣氛退火到600◦C,結果顯示原本兩者表面都呈現光滑無銀粒子,卻只在有鋁摻雜的樣品A 中發現消失銀粒子的再現,驗證銀離子存在的可能性。
    感應耦合電漿(ICP) 分析能偵測樣品在水中經過設定天數的銀離
    子釋放濃度,結果可見樣品A 銀離子在所有退火溫度下都具有緩慢的
    釋放率,釋放濃度均維持在安全範圍之內。接著將退火前後的所有樣
    品粉末和高分子塑料聚乙烯(PE) 以適當比例混成,熱加工形成抗菌壓模,持壓模針對大腸桿菌(E. coli) 及金黃色葡萄球(S. aureus) 菌進行標準抗菌測試,抗菌結果顯示除了退火至1000◦C 的樣品其餘都表現出極優良的抗菌性質。
    在未退火前30◦C 的氧化矽鋁奈米微球展現出最適合做為抗菌材料
    的性質,優點具有良好化學耐久性,抗菌能力符合高標準,還有潔白
    的外觀感受。退火後的樣品雖不具有特別吸引人的抗菌顏色外貌,最
    終卻發現銀的熱穩定性變化趨向。這些結果顯示本研究在生醫材料領
    域具有前瞻性的發展潛力。


    In this study, we have successfully prepared an ionic silver(Ag+) uniformly incorporated into amorphous silica/aluminum framework and silver nanoparticles was embedded on its surface by sol-gel process, which introduce controlled Al atoms to play a significant role in overall Silica matrix. It attributed that the premier reason for silver ions uniformly distribute in entity of silica carrier. The interaction between [AlO4]− tetrahedral structure and
    Ag+ result in uniform Ag+ distribution in matrix by electrostatic force, and then Ag+ embedded Al-O-Si structure(sample A) is revealed.
    In order to verify the significance of Al atoms, extra control group specimens(sample B) were also prepared by the identical method and condition except for removing procedure of adding Al(NO3)3 · 9H2O as a precursor to
    ensure the final product without the Al components. The Ag+ embedded Al-O-Si structure was then annealed in O2 atmosphere range from the temperature 250◦C to 1000◦C.
    The surface composition ratio of silver atoms and monovalent silver ions were changed with annealed condition constantly, which could divide into the three steps transition. Silver nanoparticles reduced on the surface at lower temperature initially. As temperature gradually increased, silver atoms immediately fulfilled ionization requirement with transforming to the ionic state.
    Furthermore, it might take place melting and desquamation at higher temperature.
    XPS analysis interpreted more specifically the digital content results of silver atoms and ions on the surface by calculating the area under the deconvolution curve. To give a proof which silver ions definitely existed, Both sample
    A and B annealed in O2 at 1000◦C were carried out second-stage annealing reached to 600◦C in N2(90%),H2(10%) atmosphere. The results exhibit there were disappeared silver nanoparticles solely rediscovered in sample A. Proving the possibility which the silver ions present.
    ICP analysis detected the silver ions releasing rate in the water. the consequence show whole sample A slowly release silver ions in the setting time interval, which maintain within safety region.We utilized as-prepared Agembedded
    on aluminum/silica to hybrid with Polyethylene(PE) by hot working to form the film, which show excellent antibacterial property exclusive of 1000◦C by reason of having the standard antibacterial test against E. coli and
    S. aureus.
    The sample A before annealing at 30◦C emerges the most desirable property as an antibacterial material. The advantages possess chemical durability, high standard antibacterial ability and colorless appearance. Thought the
    samples after annealing do not include appealing color, the evolution of silver thermal stability are eventually found out. These consequences present prospective development in biomaterial.

    摘要 ............................................................................................................. i 誌謝 ............................................................................................................. v 目錄 ............................................................................................................. vii 圖目錄 ......................................................................................................... x 表目錄 ......................................................................................................... xii 第一章緒論 ............................................................................................... 1 1.1 前言 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 第二章文獻回顧 ....................................................................................... 4 2.1 二氧化矽合成:溶膠凝膠法 . . . . . . . . . . . . . . . . . 4 2.1.1 水解反(hydrolysis) . . . . . . . . . . . . . . . . . 5 2.1.2 聚縮合反應(condensation) . . . . . . . . . . . . . . 5 2.1.3 影響反應的參數. . . . . . . . . . . . . . . . . . . . 6 2.2 二氧化矽複合材料 . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.1 二氧化矽/銀 . . . . . . . . . . . . . . . . . . . . . . 8 2.2.2 二氧化矽/鎳 . . . . . . . . . . . . . . . . . . . . . . 11 2.2.3 二氧化矽/金 . . . . . . . . . . . . . . . . . . . . . . 14 2.3 奈米銀及其抗菌原理與機制 . . . . . . . . . . . . . . . . . 16 2.3.1 奈米銀特性概述. . . . . . . . . . . . . . . . . . . . 16 2.3.2 抗菌機理 . . . . . . . . . . . . . . . . . . . . . . . . 19 2.4 抗菌劑研究現狀 . . . . . . . . . . . . . . . . . . . . . . . . 21 2.4.1 沸石抗菌劑. . . . . . . . . . . . . . . . . . . . . . 21 2.4.2 磷酸鹽抗菌劑. . . . . . . . . . . . . . . . . . . . . 22 2.4.3 氧化鋅抗菌劑. . . . . . . . . . . . . . . . . . . . . 22 2.4.4 TiO2 抗菌劑 . . . . . . . . . . . . . . . . . . . . . . 23 2.5 二氧化矽/銀退火處理性質剖析及抗菌應用. . . . . . . . . 24 2.5.1 二氧化矽圓球/銀. . . . . . . . . . . . . . . . . . . 24 2.5.2 二氧化矽其他結構/銀. . . . . . . . . . . . . . . . . 25 第三章實驗步驟及分析 ........................................................................... 27 3.1 藥品 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2 實驗流程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2.1 銀鑲嵌氧化鋁矽奈米微球的製備. . . . . . . . . . 27 3.2.2 銀鑲嵌二氧化矽奈米微球的製備. . . . . . . . . . 30 3.2.3 高溫退火處理程序. . . . . . . . . . . . . . . . . . 30 3.2.4 離子釋放分析. . . . . . . . . . . . . . . . . . . . . 30 3.2.5 抗菌試驗 . . . . . . . . . . . . . . . . . . . . . . . . 31 3.3 分析量測儀器 . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.3.1 場發射掃描式電子顯微鏡(Field emission scanning electron microscope,FE-SEM) . . . . . . . . . 32 3.3.2 分析式穿透式電子顯微鏡(Analytical trasmission electron microscope,AEM) . . . . . . . . . . . 33 3.3.3 電子能量散射能譜(Energy dispersive x-ray spectroscopy,EDS) . . . . . . . . . . . . . . . . . . . . 34 3.3.4 化學分析電子能譜儀(Electron spectroscopy for chemical analysis,ESCA or XPS) . . . . . . . . . . . . . 34 3.3.5 感應耦合電漿原子發射光譜分析儀(Inductivity coupled plasma-atomic emission spectrometer , ICP-AES) . . . . . . . . . . . . . . . . . . . . . . . . 35 3.3.6 紫外-可見光光譜儀(UV-visible) . . . . . . . . . . . 36 第四章結果與討論 ................................................................................... 37 4.1 銀鑲嵌氧化鋁矽奈米微球 . . . . . . . . . . . . . . . . . . . 37 4.1.1 化學成長機制. . . . . . . . . . . . . . . . . . . . . 37 4.1.2 表面形貌與顯微結構分析. . . . . . . . . . . . . . 39 4.1.3 表面成份分析. . . . . . . . . . . . . . . . . . . . . 53 4.1.4 光學性質量測. . . . . . . . . . . . . . . . . . . . . 59 4.1.5 元素釋放測試. . . . . . . . . . . . . . . . . . . . . 60 4.1.6 抗菌試驗 . . . . . . . . . . . . . . . . . . . . . . . . 64 第五章結論 ............................................................................................... 66 第六章未來展望 ....................................................................................... 68 參考文獻 ..................................................................................................... 69

    [1] Stöber, W., Fink, A. & Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62--69 (1968).
    [2] Brink, C. & G.W.Scherer. Sol-gel science. Academic Press (1990).
    [3] Jiang, Z.-j. & Liu, C.-y. Seed-mediated growth technique for the preparation
    of a silver nanoshell on a silica sphere. The Journal of Physical Chemistry B 107, 12411--12415 (2003).
    [4] Tan, M. N. & Park, Y. S. Synthesis of stable hollow silica nanospheres. Journal of Industrial and Engineering Chemistry 15, 365 -- 369 (2009).
    [5] Deng, Z., Chen, M., Zhou, S., You, B. & Wu, L. A novel method for the fabrication of monodisperse hollow silica spheres. Langmuir 22, 6403-
    -6407 (2006).
    [6] Chen, M., Wu, L., Zhou, S. & You, B. A method for the fabrication of monodisperse hollow silica spheres. Advanced Materials 18, 801--806 (2006).
    [7] Wang, J.-X., Wen, L.-X., Wang, Z.-H. & Chen, J.-F. Immobilization of silver on hollow silica nanospheres and nanotubes and their antibacterial effects. Mater. Chem. Phys. 96, 90 -- 97 (2006).
    [8] Jiang, H.-L. et al. Bimetallic Au–Ni nanoparticles embedded in SiO2 nanospheres: Synergetic catalysis in hydrolytic dehydrogenation of ammonia borane. Chemistry – A European Journal 16, 3132--3137 (2010).
    [9] Umegaki, T. et al. Hollow Ni-SiO2 nanosphere-catalyzed hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage. J.Power Sources 191, 209 -- 216 (2009).
    [10] Lu, Y., Yin, Y., Li, Z.-Y. & Xia, Y. Synthesis and self-assembly of Au@SiO2 core-shell colloids. Nano Lett. 2, 785--788 (2002).
    [11] Liz-Marzán, L. M. & Lado-Touriño, I. Reduction and stabilization of silver nanoparticles in ethanol by nonionic surfactants. Langmuir 12, 3585--3589 (1996).
    [12] Henglein, A. Reduction of Ag(CN)2− on silver and platinum colloidal nanoparticles. Langmuir 17, 2329--2333 (2001).
    [13] Petit, C., Lixon, P. & Pileni, M. P. In situ synthesis of silver nanocluster
    in AOT reverse micelles. The Journal of Physical Chemistry 97, 12974--12983 (1993).
    [14] Alvin, O., Mary, M. & Andrew R, B. Silver nanoparticles: A case study in cutting edge research .
    [15] Nischala, K., Rao, T. N. & Hebalkar, N. Silica-silver core-shell particles for antibacterial textile application. Colloids and Surfaces B: Biointerfaces 82, 203 -- 208 (2011).
    [16] Chen, X. & Schluesener, H. Nanosilver: A nanoproduct in medical application. Toxicol. Lett. 176, 1 -- 12 (2008).
    [17] Schierholz, J. M., Lucas, L. J., Rump, A. & Pulverer, G. Efficacy of silver-coated medical devices. Journal of Hospital Infection 40, 257 -- 262 (1998).
    [18] Hetrick, E. M. & Schoenfisch, M. H. Reducing implant-related infections: Active release strategies. Chem Inform 37, no--no (2006).
    [19] URL http://store.pchome.com.tw/hidesign/M07734857.htm.
    [20] Shi, Z. et al. In vitro antibacterial and cytotoxicity assay of multilayered polyelectrolyte-functionalized stainless steel. Journal of Biomedical Materials Research Part A 76A, 826--834 (2006).
    [21] 劉家銘. 奈米銀抗菌產品應用與法規. 台灣奈米會刊3 -- 11 (2010).
    [22] Niira, R., Yamamoto, T. & Uchida, M. Antibiotic zeolite. US Patent (1990).
    [23] Gurin, V., Petranovskii, V., Hernandez, M.-A., Bogdanchikova, N. & Alexeenko, A. Silver and copper clusters and small particles stabilized within nanoporous silicate-based materials. Materials Science and Engineering
    A 391, 71 -- 76 (2005).
    [24] Beer, R., Calzaferri, G., Li, J. & Waldeck, B. Towards artificial photosynthesis : Experiments with silver zeolites, part 2. Coord. Chem. Rev. 111, 193 -- 200 (1991).
    [25] Wang, Q. et al. Incorporation of silver ions into ultrathin titanium phosphate films:in situ reduction to prepare silver nanoparticles and their antibacterial
    activity. Chem. Mater. 18, 1988--1994 (2006).
    [26] Tan, S., Ouyang, Y., Zhang, L., Chen, Y. & Liu, Y. Study on the structure and antibacterial activity of silver-carried zirconium phosphate. Mater. Lett. 62, 2122--2124 (2008).
    [27] Kouassi, M., Michalesco, P., Lacoste-Armynot, A. & Boudeville, P. Antibacterial effect of a hydraulic calcium phosphate cement for dental applications. Journal of Endodontics 29, 100 -- 103 (2003).
    [28] Han, I.-H. et al. Characterization of a silver-incorporated calcium phosphate film by RBS and its antimicrobial effects. Biomedical Materials 2, S91 (2007).
    [29] Yamamoto, O. Influence of particle size on the antibacterial activity of zinc oxide. International Journal of Inorganic Materials 3, 643 -- 646 (2001).
    [30] Zhang, L., Jiang, Y., Ding, Y., Povey, M. & York, D. Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). Journal of Nanoparticle Research 9, 479--489 (2007).
    [31] Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37--38 (1972).
    [32] Hoffmann, M. R., Martin, S. T., Choi, W. & Bahnemann, D. W. Environmental applications of semiconductor photocatalysis. Chemical Reviews 95, 69--96 (1995).
    [33] Linsebigler, A. L., Lu, G. & Yates, J. T.
    Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chemical Reviews 95, 735--758 (1995).
    [34] Panáček, A. et al. Silver colloid nanoparticles: Synthesis, characterization, and their antibacterial activity. The Journal of Physical Chemistry B 110, 16248--16253 (2006).
    [35] Kim, Y. H., Lee, D. K., Cha, H. G., Kim, C. W. & Kang, Y. S. Synthesis and characterization of antibacterial Ag-SiO2 nanocomposite. The Journal of Physical Chemistry C 111, 3629--3635 (2007).
    [36] Kawashita, M., Toda, S., Kim, H.-M., Kokubo, T. & Masuda, N. Preparation of antibacterial silver-doped silica glass microspheres. Journal of Biomedical Materials Research Part A 66A, 266--274 (2003).
    [37] Sangpour, P., Babapour, A., Akhavan, O. & Moshfegh, A. Z. A comparative studyof heat-treated Ag:SiO2 nanocomposites synthesized by cosputtering and sol-gel methods. Surf. Interface Anal. 41, 157--163 (2009).
    [38] Shevchenko, G., Vashchanka, S., Bokshits, Y. & Rakhmanov, S. On the nature of the processes occurring in silver doped SiO2 films under heat treatment. J. Sol-Gel Sci. Technol. 45, 143--149 (2008).
    [39] Mennig, M., Schmitt, M. & Schmidt, H. Synthesis of Ag-colloids in sol-gel derived SiO2-coatings on glass. J. Sol-Gel Sci. Technol. 8, 1035--1042 (1997).
    [40] Durucan, C. & Akkopru, B. Effect of calcination on microstructure and antibacterial activity of silver-containing silica coatings. Journal of Biomedical Materials Research Part B: Applied Biomaterials 93B, 448--458 (2010).
    [41] Hilonga, A., Kim, J., Sarawade, P. & Kim, H. Reinforced silverembedded silica matrix from the cheap silica source for the controlled release of silver ions. Appl. Surf. Sci. 255, 8239 -- 8245 (2009).
    [42] Herzberg, G. Molecular spectra and molecular structure. Vol.3: Electronic spectra and electronic structure of polyatomic molecules (1966).
    [43] URL http://butane.chem.uiuc.edu/cyerkes/Chem104A
    CSpring2009/Genchemref/bondenergies.html.
    [44] Krnel, K. & Kosmac, T. Reactivity of aluminum nitride powder in dilute inorganic acids. J. Am. Ceram. Soc. 83, 1375--1378 (2000).
    [45] Bi, H., Cai, W., Zhang, L., Martin, D. & Trager, F. Annealing-induced reversible change in optical absorption of Ag nanoparticles. Appl. Phys. Lett. 81, 5222--5224 (2002).
    [46] David R. Gaskell. Introduction to the thermodynamics of materials. Fourth edn.
    [47] Kocareva, T., Grozdanov, I. & Pejova, B. Ag and AgO thin film formation in Ag+-triethanolamine solutions. Mater. Lett. 47, 319 -- 323 (2001).
    [48] Mahltig, B. et al. Thermal preparation and stabilization of crystalline silver particles in SiO2-based coating solutions. J. Sol-Gel Sci. Technol. 49, 202--208 (2009).
    [49] De, G. et al. Silver nanocrystals in silica by sol-gel processing. J. Non-Cryst. Solids 194, 225 -- 234 (1996).
    [50] Jiang, Z.-J., Liu, C.-Y. & Liu, Y. Formation of silver nanoparticles in an acid-catalyzed silica colloidal solution. Appl. Surf. Sci. 233, 135 -- 140 (2004).
    [51] Tang, S., Zhu, S., Lu, H. & Meng, X. Shape evolution and thermal stability of Ag nanoparticles on spherical SiO2 substrates. J. Solid State Chem. 181, 587 -- 592 (2008).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE