研究生: |
洪鼎惟 Hong, Ding-Wei |
---|---|
論文名稱: |
利用聚乙二醇-芳香族聚酸酐奈米微胞包覆疏水性抗癌藥物於藥物輸送系統之研究 Encapsulation of hydrophobic anti-cancer drug by nano-micelles of methoxy poly(ethylene glycol-b-aromatic anhydride) in drug delivery system |
指導教授: |
朱一民
Chu, I-Ming |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 122 |
中文關鍵詞: | 芳香族聚酸酐 、兩性團聯高分子 、高分子微胞 、藥物釋放 、疏水性抗癌藥物 |
外文關鍵詞: | aromatic anhydride, amphiphilic copolymer, polymeric micelles, drug release, anti-cancer hydrophobic drug |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
兩性團聯共聚物因為疏水作用力能在水中自組裝形成微胞,因此可以包覆疏水性藥物,所以高分子微胞作為藥物載體在近年來受到很多研究者的重視和研究。
本研究利用親水性高的mPEG和疏水性的芳香族聚酸酐,經熔融縮合得到四種不同的兩性高分子(mPEG5000CPP、mPEG5000CPH、mPEG2000CPP、mPEG2000CPH)。1H-NMR、FT-IR及GPC確立高分子的結構,由臨界微胞濃度(CMC)和表面化學結構鑑定,確定聚乙二醇-芳香族聚酸酐能夠在極低的濃度下形成微胞,並且形成穩定的疏水核心。在粒徑方面,皆能形成粒徑小於200 nm的微胞,並在30天內有良好的粒徑穩定度。降解後,也不會造成嚴重的pH值下降,並以MTT測試,可以發現無論何種材料及濃度皆對於正常的人類纖維母細胞沒有毒殺性,存活率皆高達90%以上。
紫杉醇、薑黃素皆是對於癌症具有療效的疏水性藥物,水溶解度很低(分別為1.17×10-6mole/L、2.99×10-8 mole/L),藉由本研究之奈米微胞包覆,可提高溶解度至少25及4.88×103倍以上。包覆藥物後的粒徑仍能維持在200 nm以下,包覆率方面,最高皆可達70% 以上,在藥物含量方面也可達3.00 %、6.75%。經由藥物釋放曲線可以發現包覆紫杉醇的釋放速率較慢於薑黃素,但兩者皆產生較低的突釋(initial burst)現象,且可以在15天內穩定的釋放。考量微胞粒徑、穩定度、藥物包覆率及藥物釋放,以mPEG5000CPP包覆紫杉醇(藥物與高分子重量比,D/P=0.050)、mPEG5000CPP包覆薑黃素(D/P=0.075)為最佳化條件。
將包覆疏水性抗癌藥物的微胞對子宮頸癌細胞HeLa進行細胞毒殺性試驗,發現當紫杉醇濃度6.27 ppm以高分子微胞包覆,即可殺死50%以上的細胞,證明藥物對於癌細胞仍具有毒性,且能在極低的濃度下殺死癌細胞;就薑黃素而言,僅需要4.66 ppm即可殺死50%以上的細胞。
由高分子微胞的基本性質、藥物釋放及細胞實驗可以知道聚乙二醇-芳香族聚酸酐所形成的奈米微胞為很好的疏水性藥物載體,對於癌症的藥物治療的應用上有相當的潛力。
Polymeric micelles as drug carriers have drawn much attention in recent decades, because amphiphilic copolymers can self-assemble to form micelles in water due to hydrophilic and hydrophobic interactions.
In this study, poly(ethylene glycol) methyl ether and poly aromatic anhydride were used to act as hydrophilic and hydrophobic group, respectively. Four different polymers (mPEG5000CPP、mPEG5000CPH、mPEG2000CPP、mPEG2000CPH) were synthesized using melt condensation approach. The physical and chemical properties of polymer were evaluated by 1H-NMR、FT-IR and GPC. Through critical micelle concentration (CMC) and surface chemical structure analysis, we confirmed that micelles can be formed in very low concentration and had a stable hydrophobic core. The micelles sizes were measured smaller than 200 nm and had good stability during 30 days degradation test. The four different polymeric micelles showed low cytotoxicity toward human fibroblast cells by MTT assay.
With curative effect in cancer, hydrophobic drugs, paclitaxel and curcumin, which are difficult to dissolve in PBS (with solubility of 1.17×10-6 and 2.99×10-8 mole/L, respectively) are of interests. We can improve the solubility of paclitaxel fourty-fold and curcumin five thousand-fold by micelles encapsulation. Paclitaxel were incorporated into these micelles with encapsulation efficiency around 55% to 75%, depending on the different loading ratio and with drug content around 3.56%. High loading efficiency around 75% as well as drug content around 6.83% were observed in curcumin-loaded micelles. In both paclitaxel and curcumin micielles there were no initial burst phenomenon observed. Both micelles showed sustained release for about 18 days, with curcumin released faster than paclitaxel. According to the size of drug-loaded micelles,the stability of drug-loaded micelles,encapsulation efficiency and drug release curve, paclitaxel-loaded in mPEG5000CPP(D/P=0.050)and curcumin-loaded in mPEG5000CPP(D/P=0.075)are shown to be the best formulation for each drug we tested. Paclitaxel- and curcumin-loaded micelles showed IC50 values of about 6.27 and 4.66 ppm of the drugs, respectively, toward HeLa cell. This means that drugs are effective toward cancer cells and can kill cancer cells in very low concentrations.
As a result, we conclude that nano-micelles of methoxy poly(ethylene glycol-b-aromatic anhydride) may be suitable for encapsulating those hydrophobic anti-cancer drugs.
1.林峰輝, 白育綸, 生物醫用材料. 新文京開發出版股份有限公司: 2004.
2.J.S. Temenoff, A. G. M., Biomaterials : the Intersection of biology and materials science. Pearson/Prentice Hall: USA, 2008.
3.黃博偉, 生物可分解高分子之應用與產品研究 : 以生醫材料為例. 工業技術研究院產業經濟與資訊服務中心: 新竹縣, 2004.
4.黃立宇, 聚酯類溫度敏感型水膠應用於免疫抑制藥物傳輸之研究. 國立清華大學奈米工程與微系統研究所: 2009.
5.李怜, 以葉酸標的之聚乙二醇-聚乳酸二團聯共聚物合成及其高分子微胞之研究. 國立清華大學化學工程學系 2006.
6.林中英, 蔡偉博, 生物材料應用於人工血液的發展與應用. Chemistry(The Chinese Chem. Soc., taipei) 2006, 64, (1), 97~104.
7.Rosen, H. B.; Chang, J.; Wnek, G. E.; Linhardt, R. J.; Langer, R., Bioerodible Polyanhydrides for Controlled Drug Delivery. Biomaterials 1983, 4, (2), 131-133.
8.Pathiraja A.Gunatillake, R. A., Biodegradable synthetic polymers for tissue engineering. European Cells and Materials 2003, 5, 1~16.
9.Kohn, J., S.Abramson,R.Langer, Bioresorbable and Bioerodible Materials. "In Biomaterials Science: An Introduction to Materials in Medicine". Elsevier Academic Press: 2004.
10.Langer, R., Polymeric Delivery Systems for Controlled Drug Release. Chemical Engineering Communications 1980, 6, (1-3), 1-48.
11.Gopferich, A., Mechanisms of polymer degradation and erosion. Biomaterials 1996, 17, (2), 103-114.
12.Hollinger, J. O., Biomedical Applications of Synthetic Biodegradable Polymers. CRC Press: 1995.
13.李致達, 新型Chondroitin sulfate 接枝PLLA 共聚物之合成及其在藥物傳輸與組織工程之應用. 國立清華大學化學工程系: 2006.
14.Leong, K. W.; Simonte, V.; Langer, R., Synthesis of Polyanhydrides - Melt-Polycondensation, Dehydrochlorination, and Dehydrative Coupling. Macromolecules 1987, 20, (4), 705-712.
15.Kumar, N.; Langer, R. S.; Domb, A. J., Polyanhydrides: an overview. Advanced Drug Delivery Reviews 2002, 54, (7), 889-910.
16.Engelberg, I.; Kohn, J., Physicomechanical Properties of Degradable Polymers Used in Medical Applications - a Comparative-Study. Biomaterials 1991, 12, (3), 292-304.
17.Elisseeff, J.; Anseth, K.; Sims, D.; McIntosh, W.; Randolph, M.; Langer, R.,Transdermal photopolymerization for minimally invasive implantation. Proceedings of the National Academy of Sciences of the United States of America 1999, 96, (6), 3104-3107.
18.Weiner, A. A.; Bock, E. A.; Gipson, M. E.; Shastri, V. P., Photocrosslinked anhydride systems for long-term protein release. Biomaterials 2008, 29, (15), 2400-2407.
19.Ulery, B. D.; Phanse, Y.; Sinha, A.; Wannemuehler, M. J.; Narasimhan, B.; Bellaire, B. H., Polymer Chemistry Influences Monocytic Uptake of Polyanhydride Nanospheres. Pharmaceutical Research 2009, 26, (3), 683-690.
20.Torres, M. P.; Determan, A. S.; Anderson, G. L.; Mallapragada, S. K.;Narasimhan,B., Amphiphilic polyanhydrides for protein stabilization and release. Biomaterials 2007, 28, (1), 108-116.
21.Brem, H.; Mahaley, S.; Vick, N. A.; Black, K. L.; Schold, S. C.; Burger, P. C.; Friedman, A. H.; Ciric, I. S.; Eller, T. W.; Cozzens, J. W.; Kenealy, J. N., Interstitial Chemotherapy with Drug Polymer Implants for the Treatment of Recurrent Gliomas. Journal of Neurosurgery 1991, 74 (3), 441-446.
22.王盈錦, 生物醫學材料. 合記圖書出版社: 2002.
23.Chien, Y. W., Novel Drug delivery System. Marcel Dekker: 1992.
24.Pisanic, T. R.; Blackwell, J. D.; Shubayev, V. I.; Finones, R. R.; Jin, S., Nanotoxicity of iron oxide nanoparticle internalization in growing neurons. Biomaterials 2007, 28, (16), 2572-2581.
25.Kopecek, J., Polymer chemistry - Swell gels. Nature 2002, 417, (6887), 388.
26.W. B. Gert, V. R., F. Okke, et al, Hydrogels for the controlled release of pharmaceutical proteins. Parmaceutical Technology 2001, 110~120.
27.林厚均, 兩性團聯共聚物製備及其藥物釋放應用之性質研究. 國立清華大學 化學工程學系: 2009.
28.Kataoka, K.; Harada, A.; Nagasaki, Y., Block copolymer micelles for drug delivery: design, characterization and biological significance. Advanced Drug Delivery Reviews 2001, 47, (1), 113-131.
29.Bangham, A. D.; Standish, M. M.; Watkins, J. C., Diffusion of Univalent Ions across Lamellae of Swollen Phospholipids. Journal of Molecular Biology 1965, 13, (1), 238.
30.http://www.cem.msu.edu/~reusch/VirtualText/lipids.htm#phoslpd.
31.Weiner, N.; Martin, F.; Riaz, M., Liposomes as a Drug Delivery System. Drug Development and Industrial Pharmacy 1989, 15, (10), 1523-1554.
32.Frezard, F.; Garnier-Suillerot, A., Permeability of lipid bilayer to anthracycline derivatives. Role of the bilayer composition and of the temperature. Biochimica Et Biophysica Acta-Lipids and Lipid Metabolism 1998, 1389, (1), 13-22.
33.Torchilin, V. P., Targeted polymeric micelles for delivery of poorly soluble drugs. Cellular and Molecular Life Sciences 2004, 61, (19-20), 2549-2559.
34.Gaucher, G.; Dufresne, M. H.; Sant, V. P.; Kang, N.; Maysinger, D.; Leroux, J. C., Block copolymer micelles: preparation, characterization and application in drug delivery. Journal of Controlled Release 2005, 109, (1-3), 169-188.
35.Allen, C.; Maysinger, D.; Eisenberg, A., Nano-engineering block copolymer aggregates for drug delivery. Colloids and Surfaces B-Biointerfaces 1999, 16, (1-4), 3-27.
36.Gunda I.Georg, T. T. C., Iwao Ojima,Dolatrai M.Vyas, Taxane Anticancer Agents: Basic Science and Current Status. Oxford University Press: 1995.
37.Walsh, V.; Goodman, J., Cancer chemotherapy, biodiversity, public and private property: the case of the anti-cancer drug Taxol. Social Science & Medicine 1999, 49, (9), 1215-1225.
38.王緯書, 抗癌新藥:太平洋紫杉醇. 2000.
39.Tsavaris, N. B.; Kosmas, C., Risk of severe acute hypersensitivity reactions after rapid paclitaxel infusion of less than 1-h duration. Cancer Chemotherapy and Pharmacology 1998, 42, (6), 509-511.
40.Dong, Y. C.; Feng, S. S., Nanoparticles of poly(D,L-lactide)/methoxy poly(ethylene glycol)-poly(D,L-lactide) blends for controlled release of paclitaxel
Journal of Biomedical Materials Research Part A 2006, 78A, (1), 12-19.
41.Venkatraman, S. S.; Jie, P.; Min, F.; Freddy, B. Y. C.; Leong-Huat, G., Micelle-like nanoparticles of PLA-PEG-PLA triblock copolymer as chemotherapeutic carrier. International Journal of Pharmaceutics 2005, 298, (1), 219-232.
42.Schiff, P. B.; Horwitz, S. B., Taxol Stabilizes Microtubules in Mouse Fibroblast Cells. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences 1980, 77, (3), 1561-1565.
43.Kevin Letchford, R. L., Helen Burt, Solubilization of Hydrophobic Drugs by Methoxy Poly(Ethylene Glycol)-Block-Polycaprolactone Diblock Copolymer Micelles:Theoretical and Experimental Data and Correlations. Journal of Pharmaceuticals Sciences 2007, 97, (3), 1179~1190.
44.Wang, Y. J.; Pan, M. H.; Cheng, A. L.; Lin, L. I.; Ho, Y. S.; Hsieh, C. Y.; Lin, J. K.Stability of curcumin in buffer solutions and characterization of its degradation products. Journal of Pharmaceutical and Biomedical Analysis 1997, 15, (12), 1867-1876.
45.Kurzrock, R.; Li, L., Liposome-encapsulated curcumin: in vitro and in vivo effects on proliferation, apoptosis, signaling, and anglogenesis. Journal of Clinical Oncology 2005, 23, (16), 330s-330s.
46.Bisht,S.; Feldmann,G.; Soni,S.; Ravi,R.; Karikar,C.; Maitra,A., Polymeric nanoparticle-encapsulated curcumin ("nanocurcumin"):a novel strategy for human cancer therapy. Journal of Nanobiotechnology 2007, 5, 3.
47.Madhumita Roy, S. C., Maqsood Siddiqi, Rathin K Bhattacharya, Induction of Apoptosis in Tumor Cells by Natural Phenolic Compounds. Asian Pacific Journal of Cancer Prevention 2002, 3, 61~67.
48.Scott, D. W.; Loo, G., Curcumin-induced GADD153 gene up-regulation in human colon cancer cells. Carcinogenesis 2004, 25, (11), 2155-2164.
49.Rashmi, R.; Kumar, T. R. S.; Karunagaran, D., Human colon cancer cells differ in their sensitivity to curcumin-induced apoptosis and heat shock protects them by inhibiting the release of apoptosis-inducing factor and caspases. Febs Letters 2003, 538, (1-3), 19-24.
50.林書玄, 具抗反射性質的超親水自潔表面之設計與製備 國立成功大學化學工程學系: 2008.
51.Feng, S. S.; Mu, L.; Chen, B. H.; Pack, D., Polymeric nanospheres fabricated with natural emulsifiers for clinical administration of an anticancer drug paclitaxel
(Taxol(○R). Materials Science & Engineering C-Biomimetic and Supramolecular Systems 2002, 20, (1-2), 85-92.
52.邱麒維, 聚乙二醇-聚癸二酸酐自我組裝之奈米顆粒於藥物控制釋放之研究. 國立清華大學化學工程學系: 2007.
53.Conix, A., Poly[1,3-bis(p-carboxyphenoxy)propane anhydride]. Macromolecular Synthesis 1966, 2, 95-98.
54.Xing, J. D., L.; Xie,C.; Xiao,L.; Zhai,Y.; Jin,F.; Li,Y.; Dong,A., Methoxy poly(ethylene glycol)-b-poly(octadecanoic anhydride)-b-methoxy poly(ethylene glycol) amphiphilic triblock copolymer nanoparticles as delivery vehicles for paclitaxel. Polymers for Advanced Technologies 2009.
55.Liu, A. C.; Lou, H. X.; Zhao, L. X.; Fan, P. H., Validated LC/MS/MS assay for curcumin and tetrahydrocurcumin in rat plasma and application to pharma-cokinetic study of phospholipid complex of curcumin. Journal of Pharmaceutical and Biomedical Analysis 2006, 40, (3), 720-727.
56.Mathiowitz, E.; Kreitz, M.; Pekarek, K., Morphological Characterization of Bioerodible Polymers .2. Characterization of Polyanhydrides by Fourier-Transform Infrared-Spectroscopy. Macromolecules 1993, 26, (25), 6749-6755.
57.Vogel, B. M.; Cabral, J. T.; Eidelman, N.; Narasimhan, B.; Mallapragada, S. K., Parallel synthesis and high throughput dissolution testing of biodegradable polyanhydride copolymers. Journal of Combinatorial Chemistry 2005, 7, (6), 921-928.
58.Zhang, N.; Guo, S. R.; Li, H. Q.; Liu, L.; Li, Z. H.; Gu, J. R., Synthesis of three types of amphiphilic poly(ethylene glycol)-block-poly (sebacic anhydride) copolymers and studies of their micellar solutions. Macromolecular Chemistry and Physics 2006, 207, (15), 1359-1367.
59.徐誠駿, 聚乙二醇-聚癸二酸酐與聚乙二醇-聚乳酸共聚物混合微胞於薑黃素之藥物輸送研究. 國立清華大學化學工程學系: 2009.
60.Danhier, F.; Lecouturier, N.; Vroman, B.; Jerome, C.; Marchand-Brynaert, J.; Feron, O.; Preat, V., Paclitaxel-loaded PEGylated PLGA-based nanoparticles: In vitro and in vivo evaluation. Journal of Controlled Release 2009, 133, (1), 11-17.
61.黃恩琪, 葡聚醣接枝聚己內酯之兩性高分子及其奈米粒子應用於包覆藥物的研究. 國立清華大學化學工程學系: 2008.