研究生: |
郭俐君 Kok, Li-Ching |
---|---|
論文名稱: |
轉錄因子PsrA在綠膿桿菌PAO1中調控群體感應的作用 Roles of transcriptional factor PsrA in the regulation of quorum sensing in Pseudomonas aeruginosa PAO1 |
指導教授: |
張晃猷
Chang, Hwan-You |
口試委員: |
高茂傑
Kao, Mou-Chieh 張壯榮 Chang, Chuang-Rung 林靖婷 Lin, Ching-Ting 賴怡琪 Lai, Yi-Chyi |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 86 |
中文關鍵詞: | 綠膿桿菌 、群體感應 、油酸 、PsrA 、LasR 、LipA |
外文關鍵詞: | Pseudomonas aeruginosa, Quorum-sensing, oleate, PsrA, LasR, LipA |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
轉錄因子PsrA在調節綠膿桿菌(Pseudomonas aeruginosa)的第三型分泌系統、脂肪酸代謝和喹諾酮信號的群體感應系統中扮演著多方面的角色。本研究旨在進一步探討PsrA的功能,通過引入含有psrA基因(pMMBpsrA)的重組質體來提高綠膿桿菌 PAO1中psrA的表達,並分析其對細菌的影響。轉錄組分析顯示,相較於野生株,大量表現 PsrA顯著下調了群體感應調節因子LasR和RhlR以及許多與群體感應相關的基因表現量。通過使用分別檢測短鏈和長鏈酰基高絲氨酸內酯(N-acyl homoserine lactone)的兩種報告菌株——紫色桿菌(Chromobacterium violaceum)CV026和攜帶[pSB1075]質體的大腸桿菌(Escherichia coli)——評估PAO1 [pMMBpsrA]中自誘導劑(autoinducer)的產生,進一步確認了PsrA在群體感應中的作用。透過同源ΔpsrA、ΔlasR和ΔpsrA-ΔlasR突變株的表型分析表明,PAO1 [pMMBpsrA]中的彈性蛋白酶、酪蛋白酶和游動活性的降低可能是通過LasR介導的。除了群體感應,PsrA還負向調節綠膿桿菌PAO1中的主要脂肪酶LipA,增加其在脂肪酸代謝中的角色層次。電泳遷移率變動分析(electrophoretic mobility shift assays)證明,重組蛋白PsrA可以結合到lasR和lipA的啟動子,這些啟動子中包含的序列與已知的PsrA結合位點具有高相似度。此外,PsrA的效應分子油酸(oleic acid)抑制了PsrA與lasR和lipA啟動子的結合,並恢復了幾種群體感應相關的表現型至野生PAO1的水平。將psrA基因剔除和大量表現psrA的綠膿桿菌PAO1感染蠟蛾(Galleria mellonella)幼蟲揭示了PsrA在綠膿桿菌感染寄主的活體毒性作用。綜合來看,這些發現表明PsrA通過負向調節lasR和lipA的表達來調節群體感應和脂肪酶,且長鏈脂肪酸在此調節過程中的重要信號分子。
The transcription factor PsrA plays a multifaceted role in regulating the type III secretion system, fatty acid metabolism, and the quinolone signaling quorum sensing system in Pseudomonas aeruginosa. This study aimed to further investigate the functions of PsrA by introducing P. aeruginosa PAO1 a recombinant plasmid containing the psrA gene (pMMBpsrA), thereby increasing psrA expression, and analyzing its effects on the bacterium. Transcriptomic analysis showed that PsrA significantly downregulated genes encoding the key quorum-sensing regulators, LasR and RhlR, along with numerous genes associated with quorum sensing. The role of PsrA in quorum sensing was further confirmed by assessing autoinducer production in PAO1 [pMMBpsrA] using two reporter bacterial strains, Chromobacterium violaceum CV026 and Escherichia coli JM109 harboring [pSB1075], which detect short- and long-chain acyl homoserine lactones, respectively. Phenotypic analysis of isogenic ΔpsrA, ΔlasR, and ΔpsrA-ΔlasR mutants indicated that the decreased elastase, caseinase, and swarming activity in PAO1 [pMMBpsrA] were likely mediated through LasR. In addition to quorum-sensing, PsrA negatively regulates the major lipase LipA in P. aeruginosa PAO1, adding another layer to its role in fatty acid metabolism. Electrophoretic mobility shift assays demonstrated that recombinant PsrA could bind to the lasR and lipA promoters, which moderately resembles the previously identified consensus PsrA binding motif. In addition, the PsrA effector molecule oleic acid hampered PsrA binding to the lasR and lipA promoters and restored several quorum-sensing-related phenotypes to wild-type levels. A survival study of Galleria mellonella larvae challenged with deletion and overexpression of psrA of P. aeruginosa PAO1 revealed the toxic effect of PsrA in vivo. Collectively, these observations indicate that psrA coordinates quorum sensing and lipase by negatively regulating lasR and lipA expression, and long-chain fatty acids serve as an important signaling molecule in this regulatory process.
1. Fergie JE, Shema SJ, Lott L, Crawford R, Patrick CC. 1994. Pseudomonas aeruginosa bacteremia in immunocompromised children: analysis of factors associated with a poor outcome. Clin Infect Dis 18:390-4.
2. Bergen GA, Shelhamer JH. 1996. Pulmonary infiltrates in the cancer patient. New approaches to an old problem. Infect Dis Clin North Am 10:297-325.
3. Rowe SM, Miller S, Sorscher EJ. 2005. Cystic fibrosis. N Engl J Med 352:1992-2001.
4. Döring G. 1997. Cystic fibrosis respiratory infections: interactions between bacteria and host defence. Monaldi Arch Chest Dis 52:363-6.
5. Richards MJ, Edwards JR, Culver DH, Gaynes RP. 1999. Nosocomial infections in medical intensive care units in the United States. Crit Care Med 27:887-92.
6. Crouch Brewer S, Wunderink RG, Jones CB, Leeper KV, Jr. 1996. Ventilator-associated pneumonia due to Pseudomonas aeruginosa. Chest 109:1019-29.
7. Richard P, Le Floch R, Chamoux C, Pannier M, Espaze E, Richet H. 1994. Pseudomonas aeruginosa outbreak in a burn unit: role of antimicrobials in the emergence of multiply resistant strains. J Infect Dis 170:377-83.
8. Dunn M, Wunderink RG. 1995. Ventilator-associated pneumonia caused by Pseudomonas infection. Clin Chest Med 16:95-109.
9. Wick MJ, Hamood AN, Iglewski BH. 1990. Analysis of the structure-function relationship of Pseudomonas aeruginosa exotoxin A. Mol Microbiol 4:527-35.
10. Hong YQ, Ghebrehiwet B. 1992. Effect of Pseudomonas aeruginosa elastase and alkaline protease on serum complement and isolated components C1q and C3. Clin Immunol Immunopathol 62:133-8.
11. Van Delden C, Iglewski BH. 1998. Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg Infect Dis 4:551-560.
12. Kipnis E, Sawa T, Wiener-Kronish J. 2006. Targeting mechanisms of Pseudomonas aeruginosa pathogenesis. Med Mal Infect 36:78-91.
13. Livermore DM. 2002. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin Infect Dis 34:634-40.
14. Whiteley M, Bangera MG, Bumgarner RE, Parsek MR, Teitzel GM, Lory S, Greenberg EP. 2001. Gene expression in Pseudomonas aeruginosa biofilms. Nature 413:860-4.
15. Wyckoff TJO, Thomas B, Hassett DJ, Wozniak DJ. 2002. Static growth of mucoid Pseudomonas aeruginosa selects for non-mucoid variants that have acquired flagellum-dependent motility. Microbiology (Reading) 148:3423-3430.
16. Dietrich LE, Price-Whelan A, Petersen A, Whiteley M, Newman DK. 2006. The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol Microbiol 61:1308-21.
17. Denning GM, Railsback MA, Rasmussen GT, Cox CD, Britigan BE. 1998. Pseudomonas pyocyanine alters calcium signaling in human airway epithelial cells. Am J Physiol 274:L893-L900.
18. Rada B LT. 2013. Pyocyanin effects on respiratory epithelium: relevance in Pseudomonas aeruginosa airway infections. Trends Microbiol 21:73-81.
19. Lau GW, Ran H, Kong F, Hassett DJ, Mavrodi D. 2004. Pseudomonas aeruginosa pyocyanin is critical for lung infection in mice. Infect Immun 72:4275-8.
20. de Bentzmann S, Roger P, Dupuit F, Bajolet-Laudinat O, Fuchey C, Plotkowski MC, Puchelle E. 1996. Asialo GM1 is a receptor for Pseudomonas aeruginosa adherence to regenerating respiratory epithelial cells. Infect Immun 64:1582-8.
21. Gilboa-Garber N. 1996. Towards anti-Pseudomonas aeruginosa adhesion therapy. Adv Exp Med Biol 408:39-50.
22. Feldman M, Bryan R, Rajan S, Scheffler L, Brunnert S, Tang H, Prince A. 1998. Role of flagella in pathogenesis of Pseudomonas aeruginosa pulmonary infection. Infect Immun 66:43-51.
23. Iglewski BH, Sadoff J, Bjorn MJ, Maxwell ES. 1978. Pseudomonas aeruginosa exoenzyme S: an adenosine diphosphate ribosyltransferase distinct from toxin A. Proc Natl Acad Sci U S A 75:3211-5.
24. Woods DE, Iglewski BH. 1983. Toxins of Pseudomonas aeruginosa: new perspectives. Rev Infect Dis 5 Suppl 4:S715-22.
25. Nicas TI, Frank DW, Stenzel P, Lile JD, Iglewski BH. 1985. Role of exoenzyme S in chronic Pseudomonas aeruginosa lung infections. Eur J Clin Microbiol 4:175-9.
26. Galloway DR. 1991. Pseudomonas aeruginosa elastase and elastolysis revisited: recent developments. Mol Microbiol 5:2315-21.
27. Wagner VEaI, B.H. 2006. Quorum sensing and regulation of Pseudomonas aeruginosa infections, p 1-22. In Demuth DR, Lamont R (ed), Bacterial Cell-to-Cell Communication: Role in Virulence and Pathogenesis doi:10.1017/CBO9780511541506.002. Cambridge University Press, Cambridge.
28. Heck LW, Morihara K, McRae WB, Miller EJ. 1986. Specific cleavage of human type III and IV collagens by Pseudomonas aeruginosa elastase. Infect Immun 51:115-8.
29. Heck LW, Alarcon PG, Kulhavy RM, Morihara K, Russell MW, Mestecky JF. 1990. Degradation of IgA proteins by Pseudomonas aeruginosa elastase. J Immunol 144:2253-7.
30. Jacquot J, Tournier JM, Puchelle E. 1985. In vitro evidence that human airway lysozyme is cleaved and inactivated by Pseudomonas aeruginosa elastase and not by human leukocyte elastase. Infect Immun 47:555-60.
31. Johnson DA, Carter-Hamm B, Dralle WM. 1982. Inactivation of human bronchial mucosal proteinase inhibitor by Pseudomonas aeruginosa elastase. Am Rev Respir Dis 126:1070-3.
32. Read RC, Roberts P, Munro N, Rutman A, Hastie A, Shryock T, Hall R, McDonald-Gibson W, Lund V, Taylor G, et al. 1992. Effect of Pseudomonas aeruginosa rhamnolipids on mucociliary transport and ciliary beating. J Appl Physiol (1985) 72:2271-7.
33. Liu PV. 1974. Extracellular toxins of Pseudomonas aeruginosa. J Infect Dis 130 Suppl:S94-9.
34. Jimenez PN, Koch G, Thompson JA, Xavier KB, Cool RH, Quax WJ. 2012. The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol Mol Biol Rev 76:46-65.
35. Smith RS, Iglewski BH. 2003. P. aeruginosa quorum-sensing systems and virulence. Curr Opin Microbiol 6:56-60.
36. Engebrecht J, Nealson K, Silverman M. 1983. Bacterial bioluminescence: isolation and genetic analysis of functions from Vibrio fischeri. Cell 32:773-81.
37. Engebrecht J, Silverman M. 1984. Identification of genes and gene products necessary for bacterial bioluminescence. Proc Natl Acad Sci U S A 81:4154-8.
38. Nealson KH, Platt T, Hastings JW. 1970. Cellular control of the synthesis and activity of the bacterial luminescent system. J Bacteriol 104:313-22.
39. Passador L, Cook JM, Gambello MJ, Rust L, Iglewski BH. 1993. Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science 260:1127-30.
40. Kiratisin P, Tucker KD, Passador L. 2002. LasR, a transcriptional activator of Pseudomonas aeruginosa virulence genes, functions as a multimer. J Bacteriol 184:4912-9.
41. Gambello MJ, Iglewski BH. 1991. Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression. J Bacteriol 173:3000.
42. Dunny GM, Winans SC. 1999. Transcriptional activation by LuxR, p 231-242, Cell-cell signaling in bacteria. ASM Press, Washington, D.C.
43. Kiratisin P, Tucker KD, Passador L. 2002. LasR, a transcriptional activator of Pseudomonas aeruginosa virulence genes, functions as a multimer. Journal of bacteriology 184:4912-4919.
44. Schuster M, Greenberg EP. 2006. A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. Int J Med Microbiol 296:73-81.
45. Li LL, Malone JE, Iglewski BH. 2007. Regulation of the Pseudomonas aeruginosa quorum-sensing regulator VqsR. J Bacteriol 189:4367-74.
46. Toder DS, Gambello MJ, Iglewski BH. 1991. Pseudomonas aeruginosa LasA: a second elastase under the transcriptional control of lasR. Mol Microbiol 5:2003-10.
47. Gambello MJ, Kaye S, Iglewski BH. 1993. LasR of Pseudomonas aeruginosa is a transcriptional activator of the alkaline protease gene (apr) and an enhancer of exotoxin A expression. Infect Immun 61:1180-1184.
48. Storey DG, Ujack EE, Rabin HR, Mitchell I. 1998. Pseudomonas aeruginosa lasR transcription correlates with the transcription of lasA, lasB, and toxA in chronic lung infections associated with cystic fibrosis. Infect Immun 66:2521-8.
49. Gallagher LA, McKnight SL, Kuznetsova MS, Pesci EC, Manoil C. 2002. Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. J Bacteriol 184:6472-80.
50. Lau GW, Hassett DJ, Ran H, Kong F. 2004. The role of pyocyanin in Pseudomonas aeruginosa infection. Trends Mol Med 10:599-606.
51. Ledgham F, Soscia C, Chakrabarty A, Lazdunski A, Foglino M. 2003. Global regulation in Pseudomonas aeruginosa: the regulatory protein AlgR2 (AlgQ) acts as a modulator of quorum sensing. Res Microbiol 154:207-13.
52. Parkins MD, Ceri H, Storey DG. 2001. Pseudomonas aeruginosa GacA, a factor in multihost virulence, is also essential for biofilm formation. Mol Microbiol 40:1215-26.
53. Diggle SP, Winzer K, Lazdunski A, Williams P, Cámara M. 2002. Advancing the quorum in Pseudomonas aeruginosa: MvaT and the regulation of N-acylhomoserine lactone production and virulence gene expression. J Bacteriol 184:2576-86.
54. Thompson LS, Webb JS, Rice SA, Kjelleberg S. 2003. The alternative sigma factor RpoN regulates the quorum sensing gene rhlI in Pseudomonas aeruginosa. FEMS Microbiol Lett 220:187-95.
55. Heurlier K, Dénervaud V, Pessi G, Reimmann C, Haas D. 2003. Negative control of quorum sensing by RpoN (sigma54) in Pseudomonas aeruginosa PAO1. J Bacteriol 185:2227-35.
56. Albus AM, Pesci EC, Runyen-Janecky LJ, West SE, Iglewski BH. 1997. Vfr controls quorum sensing in Pseudomonas aeruginosa. J Bacteriol 179:3928-3935.
57. Ochsner UA, Koch AK, Fiechter A, Reiser J. 1994. Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. J Bacteriol 176:2044-54.
58. Latifi A, Winson MK, Foglino M, Bycroft BW, Stewart GS, Lazdunski A, Williams P. 1995. Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1. Mol Microbiol 17:333-43.
59. Brint JM, Ohman DE. 1995. Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlR-RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR-LuxI family. J Bacteriol 177:7155-63.
60. Pearson JP, Pesci EC, Iglewski BH. 1997. Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol 179:5756-67.
61. Winson MK, Camara M, Latifi A, Foglino M, Chhabra SR, Daykin M, Bally M, Chapon V, Salmond GP, Bycroft BW, et al. 1995. Multiple N-acyl-L-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 92:9427-31.
62. Reimmann C, Beyeler M, Latifi A, Winteler H, Foglino M, Lazdunski A, Haas D. 1997. The global activator GacA of Pseudomonas aeruginosa PAO1 positively controls the production of the autoinducer N-butyryl-homoserine lactone and the formation of the virulence factors pyocyanin, cyanide, and lipase. Mol Microbiol 24:309-19.
63. Latifi A, Foglino M, Tanaka K, Williams P, Lazdunski A. 1996. A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol Microbiol 21:1137-46.
64. Whiteley M, Parsek MR, Greenberg EP. 2000. Regulation of quorum sensing by RpoS in Pseudomonas aeruginosa. J Bacteriol 182:4356-60.
65. Pesci EC, Milbank JB, Pearson JP, McKnight S, Kende AS, Greenberg EP, Iglewski BH. 1999. Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 96:11229-34.
66. Cao H, Krishnan G, Goumnerov B, Tsongalis J, Tompkins R, Rahme LG. 2001. A quorum sensing-associated virulence gene of Pseudomonas aeruginosa encodes a LysR-like transcription regulator with a unique self-regulatory mechanism. Proc Natl Acad Sci U S A 98:14613-8.
67. McGrath S, Wade DS, Pesci EC. 2004. Dueling quorum sensing systems in Pseudomonas aeruginosa control the production of the Pseudomonas quinolone signal (PQS). FEMS Microbiol Lett 230:27-34.
68. Wade DS, Calfee MW, Rocha ER, Ling EA, Engstrom E, Coleman JP, Pesci EC. 2005. Regulation of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa. J Bacteriol 187:4372-80.
69. Higgins S, Heeb S, Rampioni G, Fletcher MP, Williams P, Cámara M. 2018. Differential regulation of the phenazine biosynthetic operons by quorum sensing in Pseudomonas aeruginosa PAO1-N. Front Cell Infect Microbiol 8:252.
70. Xiao G, He J, Rahme LG. 2006. Mutation analysis of the Pseudomonas aeruginosa mvfR and pqsABCDE gene promoters demonstrates complex quorum-sensing circuitry. Microbiology (Reading) 152:1679-1686.
71. Farrow JM, 3rd, Pesci EC. 2007. Two distinct pathways supply anthranilate as a precursor of the Pseudomonas quinolone signal. J Bacteriol 189:3425-33.
72. Diggle SP, Matthijs S, Wright VJ, Fletcher MP, Chhabra SR, Lamont IL, Kong X, Hider RC, Cornelis P, Cámara M, Williams P. 2007. The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. Chem Biol 14:87-96.
73. Maura D, Hazan R, Kitao T, Ballok AE, Rahme LG. 2016. Evidence for direct control of virulence and defense gene circuits by the Pseudomonas aeruginosa quorum sensing regulator, MvfR. Sci Rep 6:34083.
74. Simanek KA, Taylor IR, Richael EK, Lasek-Nesselquist E, Bassler BL, Paczkowski JE. 2022. The PqsE-RhlR interaction regulates RhlR DNA binding to control virulencefactor production in Pseudomonas aeruginosa. Microbiol Spectr 10:e0210821.
75. Brouwer S, Pustelny C, Ritter C, Klinkert B, Narberhaus F, Häussler S. 2014. The PqsR and RhlR transcriptional regulators determine the level of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa by producing two different pqsABCDE mRNA isoforms. J Bacteriol 196:4163-71.
76. Young G. 1947. Pigment Production and Antibiotic Activity in Cultures of Pseudomonas aeruginosa. J Bacteriol 54:109-17.
77. Flood ME, Herbert RB, Holliman FG. 1970. Biosynthesis of pyocyanin, a phenazine microbial metabolite. Journal of the Chemical Society D: Chemical Communications doi:10.1039/C29700001514:1514-1515.
78. Finlayson EA, Brown PD. 2011. Comparison of antibiotic resistance and virulence factors in pigmented and non-pigmented Pseudomonas aeruginosa. West Indian Med J 60:24-32.
79. Baron SS, Rowe JJ. 1981. Antibiotic action of pyocyanin. Antimicrob Agents Chemother 20:814-20.
80. Kerr JR, Taylor, G. W., Rutman, A., Hoiby, N., Cole, P. J., Wilson, R. 1999. Pseudomonas aeruginosa pyocyanin and 1-hydroxyphenazine inhibit fungal growth. J Clin Pathol 52:385-7.
81. Salih S, Mohammed LJIJARI. 2017. Antibiotic action of pyocyanin on some pathogenic bacteria isolated from wound infection. 5:1197-1201.
82. Rada B, Lekstrom K, Damian S, Dupuy C, Leto TL. 2008. The Pseudomonas toxin pyocyanin inhibits the dual oxidase-based antimicrobial system as it imposes oxidative stress on airway epithelial cells. J Immunol 181:4883-93.
83. Ray A, Rentas, C., Caldwell, G. A., Caldwell, K. A. 2015. Phenazine derivatives cause proteotoxicity and stress in C. elegans. Neurosci Lett 584:23-7.
84. Muller M. 2006. Premature cellular senescence induced by pyocyanin, a redox-active Pseudomonas aeruginosa toxin. Free Radic Biol Med 41:1670-7.
85. Hall S, McDermott C, Anoopkumar-Dukie S, McFarland AJ, Forbes A, Perkins AV, Davey AK, Chess-Williams R, Kiefel MJ, Arora D, Grant GD. 2016. Cellular effects of pyocyanin, a secreted virulence factor of Pseudomonas aeruginosa. Toxins 8:236.
86. Managò A, Becker KA, Carpinteiro A, Wilker B, Soddemann M, Seitz AP, Edwards MJ, Grassmé H, Szabò I, Gulbins E. 2015. Pseudomonas aeruginosa pyocyanin induces neutrophil death via mitochondrial reactive oxygen species and mitochondrial acid sphingomyelinase. Antioxid Redox Signal 22:1097-110.
87. Bonifácio T, Arruda R, Oliveira B, Silva J, Vasconcelos UJRJPBCS. 2020. Exposure to pyocyanin promotes cellular changes in Candida spp. 11:111-119.
88. Gonçalves T, Vasconcelos U. 2021. Colour me blue: the history and the biotechnological potential of pyocyanin. Molecules 26.
89. Mavrodi DV, Bonsall RF, Delaney SM, Soule MJ, Phillips G, Thomashow LS. 2001. Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J Bacteriol 183:6454-65.
90. Hense BA, Schuster M. 2015. Core principles of bacterial autoinducer systems. Microbiol Mol Biol Rev 79:153-69.
91. Al-Shabib NA, Husain FM, Khan RA, Khan MS, Alam MZ, Ansari FA, Laeeq S, Zubair M, Shahzad SA, Khan JM, Alsalme A, Ahmad I. 2019. Interference of phosphane copper (I) complexes of β-carboline with quorum sensing regulated virulence functions and biofilm in foodborne pathogenic bacteria: A first report. Saudi J Biol Sci 26:308-316.
92. Samrot A, Syed Azeemullah A, Suhail Azharudeen M, Sree Smanvitha K, Shaya Sneha JJPC. 2016. Characterization of acyl homoserine lactone of pigment producing Effects of cultivation media components on biosurfactant and pigment production from Pseudomonas aeruginosa SU-3. 8:74-79.
93. Whooley MA, McLoughlin AJ. 1982. The regulation of pyocyanin production in Pseudomonas aeruginosa. European journal of applied microbiology and biotechnology 15:161-166.
94. van Rij ET, Wesselink M, Chin AWTF, Bloemberg GV, Lugtenberg BJ. 2004. Influence of environmental conditions on the production of phenazine-1-carboxamide by Pseudomonas chlororaphis PCL1391. Mol Plant Microbe Interact 17:557-66.
95. Vasil ML, Prince RW, Shortridge VDJPatop, disease. CRC Press I, Boca Raton, Fla. 1992. Exoproducts: Pseudomonas exotoxin A and phospholipase C.59-77.
96. Verger R. 1997. Interfacial activation of lipases: facts and artifacts. Trends in Biotechnology 15:32-38.
97. Jaeger KE. 1994. Extrazelluläre Enzyme von Pseudomonas aeruginosa als Virulenzfaktoren [Extracellular enzymes of Pseudomonas aeruginosa as virulence factors]. Immun Infekt 22:177-80.
98. Stuer W, Jaeger KE, Winkler UK. 1986. Purification of extracellular lipase from Pseudomonas aeruginosa. J Bacteriol 168:1070-4.
99. Barker AP, Vasil AI, Filloux A, Ball G, Wilderman PJ, Vasil ML. 2004. A novel extracellular phospholipase C of Pseudomonas aeruginosa is required for phospholipid chemotaxis. Mol Microbiol 53:1089-98.
100. Luberto C, Stonehouse MJ, Collins EA, Marchesini N, El-Bawab S, Vasil AI, Vasil ML, Hannun YA. 2003. Purification, characterization, and identification of a sphingomyelin synthase from Pseudomonas aeruginosa. PlcH is a multifunctional enzyme. J Biol Chem 278:32733-43.
101. Ostroff RM, Vasil AI, Vasil ML. 1990. Molecular comparison of a nonhemolytic and a hemolytic phospholipase C from Pseudomonas aeruginosa. J Bacteriol 172:5915-23.
102. Vasil ML. 2006. Pseudomonas aeruginosa phospholipases and phospholipids, p 69-97. In Ramos J-L, Levesque RC (ed), Pseudomonas: Volume 4 Molecular Biology of Emerging Issues doi:10.1007/0-387-28881-3_3. Springer US, Boston, MA.
103. Wilderman PJ, Vasil AI, Johnson Z, Vasil ML. 2001. Genetic and biochemical analyses of a eukaryotic-like phospholipase D of Pseudomonas aeruginosa suggest horizontal acquisition and a role for persistence in a chronic pulmonary infection model. Mol Microbiol 39:291-303.
104. Wohlfarth S, Hoesche C, Strunk C, Winkler UK. 1992. Molecular genetics of the extracellular lipase of Pseudomonas aeruginosa PAO1. J Gen Microbiol 138:1325-35.
105. Martínez A, Ostrovsky P, Nunn DN. 1999. LipC, a second lipase of Pseudomonas aeruginosa, is LipB and Xcp dependent and is transcriptionally regulated by pilus biogenesis components. Mol Microbiol 34:317-26.
106. Pesaresi A, Lamba D. 2005. Crystallization, X-ray diffraction analysis and phasing of carboxylesterase PA3859 from Pseudomonas aeruginosa. Biochim Biophys Acta 1752:197-201.
107. Sánchez DG, Otero LH, Hernández CM, Serra AL, Encarnación S, Domenech CE, Lisa AT. 2012. A Pseudomonas aeruginosa PAO1 acetylcholinesterase is encoded by the PA4921 gene and belongs to the SGNH hydrolase family. Microbiol Res 167:317-25.
108. Wilhelm S, Tommassen J, Jaeger KE. 1999. A novel lipolytic enzyme located in the outer membrane of Pseudomonas aeruginosa. J Bacteriol 181:6977-86.
109. Jaeger KE, Reetz MT. 1998. Microbial lipases form versatile tools for biotechnology. Trends Biotechnol 16:396-403.
110. Rosenau F, Jaeger K-E. 2000. Bacterial lipases from Pseudomonas: Regulation of gene expression and mechanisms of secretion. Biochimie 82:1023-1032.
111. Liu W, Li M, Jiao L, Wang P, Yan Y. 2017. PmrA/PmrB two-component system regulation of lipA expression in Pseudomonas aeruginosa PAO1. Front Microbiol 8:2690.
112. Wingender J, Jaeger K-E, Flemming H-C. 1999. Interaction between extracellular polysaccharides and enzymes, p 231-251. In Wingender J, Neu TR, Flemming H-C (ed), Microbial Extracellular Polymeric Substances: Characterization, Structure and Function doi:10.1007/978-3-642-60147-7_13. Springer Berlin Heidelberg, Berlin, Heidelberg.
113. Wingender J, Winkler UK. 1984. A novel biological function of alginate in Pseudomonas aeruginosa and its mucoid mutants: stimulation of exolipase. FEMS Microbiology Letters 21:63-69.
114. Tielen P, Kuhn H, Rosenau F, Jaeger K-E, Flemming H-C, Wingender J. 2013. Interaction between extracellular lipase LipA and the polysaccharide alginate of Pseudomonas aeruginosa. BMC Microbiology 13:159.
115. Rosenau F, Isenhardt S, Gdynia A, Tielker D, Schmidt E, Tielen P, Schobert M, Jahn D, Wilhelm S, Jaeger KE. 2010. Lipase LipC affects motility, biofilm formation and rhamnolipid production in Pseudomonas aeruginosa. FEMS Microbiol Lett 309:25-34.
116. Funken H, Knapp A, Vasil ML, Wilhelm S, Jaeger KE, Rosenau F. 2011. The lipase LipA (PA2862) but not LipC (PA4813) from Pseudomonas aeruginosa influences regulation of pyoverdine production and expression of the sigma factor PvdS. J Bacteriol 193:5858-60.
117. Cox M, Gerritse G, Dankmeyer L, Quax WJ. 2001. Characterization of the promoter and upstream activating sequence from the Pseudomonas alcaligenes lipase gene. J Biotechnol 86:9-17.
118. Abdou L, Chou HT, Haas D, Lu CD. 2011. Promoter recognition and activation by the global response regulator CbrB in Pseudomonas aeruginosa. J Bacteriol 193:2784-92.
119. Kojic M VV. 2001. Regulation of rpoS gene expression in Pseudomonas: Involvement of a TetR family regulator. J Bacteriol 183:3712-3720.
120. Kojic M, Aguilar C, Venturi V. 2002. TetR family member psrA directly binds the Pseudomonas rpoS and psrA promoters. J Bacteriol 184:2324-30.
121. Kojic M, Venturi V. 2001. Regulation of rpoS gene expression in Pseudomonas: involvement of a TetR family regulator. J Bacteriol 183:3712-20.
122. Kang Y, Lunin VV, Skarina T, Savchenko A, Schurr MJ, Hoang TT. 2009. The long-chain fatty acid sensor, PsrA, modulates the expression of rpoS and the type III secretion exsCEBA operon in Pseudomonas aeruginosa. Mol Microbiol 73:120-36.
123. Shen DK, Filopon D, Kuhn L, Polack B, Toussaint B. 2006. PsrA is a positive transcriptional regulator of the type III secretion system in Pseudomonas aeruginosa. Infect Immun 74:1121-9.
124. Novovic KD, Malesevic MJ, Filipic BV, Mirkovic NL, Miljkovic MS, Kojic MO, Jovcic BU. 2019. PsrA regulator connects cell physiology and class 1 integron integrase gene expression through the regulation of lexA gene expression in Pseudomonas spp. Curr Microbiol 76:320-328.
125. Kang Y, Nguyen DT, Son MS, Hoang TT. 2008. The Pseudomonas aeruginosa PsrA responds to long-chain fatty acid signals to regulate the fadBA5 beta-oxidation operon. Microbiology (Reading) 154:1584-1598.
126. Kojic M, Jovcic B, Vindigni A, Odreman F, Venturi V. 2005. Novel target genes of PsrA transcriptional regulator of Pseudomonas aeruginosa. FEMS Microbiol Lett 246:175-81.
127. Son MS, Matthews WJ, Jr., Kang Y, Nguyen DT, Hoang TT. 2007. In vivo evidence of Pseudomonas aeruginosa nutrient acquisition and pathogenesis in the lungs of cystic fibrosis patients. Infect Immun 75:5313-24.
128. Kang Y LV, Skarina T, Savchenko A, Schurr MJ, Hoang TT. 2009. The long-chain fatty acid sensor, PsrA, modulates the expression of rpoS and the type III secretion exsCEBA operon in Pseudomonas aeruginosa. Mol Microbiol 73:120-136.
129. Wells G, Palethorpe S, Pesci EC. 2017. PsrA controls the synthesis of the Pseudomonas aeruginosa quinolone signal via repression of the FadE homolog, PA0506. PLOS ONE 12:e0189331.
130. Chatterjee A, Cui Y, Hasegawa H, Chatterjee AK. 2007. PsrA, the Pseudomonas sigma regulator, controls regulators of epiphytic fitness, quorum-sensing signals, and plant interactions in Pseudomonas syringae pv. tomato strain DC3000. Appl Environ Microbiol 73:3684-94.
131. Chin AWTF, van den Broek D, Lugtenberg BJ, Bloemberg GV. 2005. The Pseudomonas chlororaphis PCL1391 sigma regulator psrA represses the production of the antifungal metabolite phenazine-1-carboxamide. Mol Plant Microbe Interact 18:244-53.
132. LaBauve AE, Wargo MJ. 2014. Detection of host-derived sphingosine by Pseudomonas aeruginosa is important for survival in the murine lung. PLoS Pathog 10:e1003889.
133. Bobadilla Fazzini RA, Skindersoe ME, Bielecki P, Puchałka J, Givskov M, Martins sos Santos VA. 2013. Protoanemonin: a natural quorum sensing inhibitor that selectively activates iron starvation response. Environ Microbiol 15:111-20.
134. Tsai C-C. 2019. Transcriptional regulator PsrA regulates quorum sensing through lasR in Pseudomonas aeruginosa PAO1 (轉錄調節因子PsrA透過lasR調控綠膿桿菌PAO1之群體感應). Master. National Tsing Hua University.
135. Liao Y-H. 2017. Regulation of pyocyanin biosynthesis by transcriptional regulator PsrA in Pseudomonas aeruginosa PAO1 (綠膿桿菌PAO1之轉錄因子PsrA於綠膿菌素生合成之調控). Master. National Tsing Hua University, Taiwan.
136. Sambrook J. 2001. Molecular cloning : a laboratory manual. Third edition. Cold Spring Harbor, N.Y. : Cold Spring Harbor Laboratory Press, [2001] ©2001.
137. King EO, Ward MK, Raney DE. 1954. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 44:301-7.
138. Woodcock DM, Crowther PJ, Doherty J, Jefferson S, DeCruz E, Noyer-Weidner M, Smith SS, Michael MZ, Graham MW. 1989. Quantitative evaluation of Escherichia coli host strains for tolerance to cytosine methylation in plasmid and phage recombinants. Nucleic Acids Res 17:3469-78.
139. Hoang TT, Karkhoff-Schweizer RR, Kutchma AJ, Schweizer HP. 1998. A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212:77-86.
140. Fürste JP, Pansegrau W, Frank R, Blöcker H, Scholz P, Bagdasarian M, Lanka E. 1986. Molecular cloning of the plasmid RP4 primase region in a multi-host-range tacP expression vector. Gene 48:119-31.
141. Yuan JS, Reed A, Chen F, Stewart CN, Jr. 2006. Statistical analysis of real-time PCR data. BMC Bioinformatics 7:85.
142. Palumbo SA. 1972. Role of iron and sulfur in pigment and slime formation by Pseudomonas aeruginosa. J Bacteriol 111:430-6.
143. Kurachi M. 1958. Studies on the biosynthesis of pyocyanine. (II) : Isolation and determination of pyocyanine. Bulletin of the Institute for Chemical Research, Kyoto University 36:174-187.
144. Essar DW, Eberly L, Hadero A, Crawford IP. 1990. Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications. J Bacteriol 172:884-900.
145. Bjorn MJ, Sokol PA, Iglewski BH. 1979. Influence of iron on yields of extracellular products in Pseudomonas aeruginosa cultures. J Bacteriol 138:193-200.
146. Sokol PA, Ohman DE, Iglewski BH. 1979. A more sensitive plate assay for detection of protease production by Pseudomonas aeruginosa. J Clin Microbiol 9:538-40.
147. Kordel M, Hofmann B, Schomburg D, Schmid RD. 1991. Extracellular lipase of Pseudomonas sp. strain ATCC 21808: purification, characterization, crystallization, and preliminary X-ray diffraction data. J Bacteriol 173:4836-41.
148. Winkler UK, Stuckmann M. 1979. Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. J Bacteriol 138:663-70.
149. Kohler T, Curty LK, Barja F, van Delden C, Pechere JC. 2000. Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol 182:5990-6.
150. McClean KH, Winson MK, Fish L, Taylor A, Chhabra SR, Camara M, Daykin M, Lamb JH, Swift S, Bycroft BW, Stewart G, Williams P. 1997. Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology (Reading) 143 ( Pt 12):3703-3711.
151. Winson MK, Swift S, Fish L, Throup JP, Jørgensen F, Chhabra SR, Bycroft BW, Williams P, Stewart GS. 1998. Construction and analysis of luxCDABE-based plasmid sensors for investigating N-acyl homoserine lactone-mediated quorum sensing. FEMS Microbiol Lett 163:185-92.
152. Stephens JM. 1959. Immune responses of some insects to some bacterial antigens. Can J Microbiol 5:203-28.
153. Kaplan EL, Meier P. 1958. Nonparametric estimation from incomplete observations. Journal of the American Statistical Association 53:457-481.
154. Graham CI, Patel PG, Tanner JR, Hellinga J, MacMartin TL, Hausner G, Brassinga AKC. 2021. Autorepressor PsrA is required for optimal Legionella pneumophila growth in Acanthamoeba castellanii protozoa. Mol Microbiol 116:624-647.
155. Kojic M AC, Venturi V. 2002. TetR family member psrA directly binds the Pseudomonas rpoS and psrA promoters. J Bacteriol 184:2324-2330.
156. Diggle SP, Winzer K, Chhabra SR, Worrall KE, Cámara M, Williams P. 2003. The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Mol Microbiol 50:29-43.
157. Schuster M, Hawkins AC, Harwood CS, Greenberg EP. 2004. The Pseudomonas aeruginosa RpoS regulon and its relationship to quorum sensing. Mol Microbiol 51:973-85.
158. He Q, Feng Z, Wang Y, Wang K, Zhang K, Kai L, Hao X, Yu Z, Chen L, Ge Y. 2019. LasR might act as an intermediate in overproduction of phenazines in the absence of RpoS in Pseudomonas aeruginosa. J Microbiol Biotechnol 29:1299-1309.
159. Sun L, Chi X, Feng Z, Wang K, Kai L, Zhang K, Cheng S, Hao X, Xie W, Ge Y. 2019. phz1 contributes much more to phenazine-1-carboxylic acid biosynthesis than phz2 in Pseudomonas aeruginosa rpoS mutant. J Basic Microbiol 59:914-923.
160. Suh SJ, Silo-Suh L, Woods DE, Hassett DJ, West SE, Ohman DE. 1999. Effect of rpoS mutation on the stress response and expression of virulence factors in Pseudomonas aeruginosa. J Bacteriol 181:3890-7.
161. Groleau MC, de Oliveira Pereira T, Dekimpe V, Déziel E. 2020. PqsE is essential for RhlR-dependent quorum sensing regulation in Pseudomonas aeruginosa. mSystems 5.
162. Gooderham WJ, Bains M, McPhee JB, Wiegand I, Hancock RE. 2008. Induction by cationic antimicrobial peptides and involvement in intrinsic polymyxin and antimicrobial peptide resistance, biofilm formation, and swarming motility of PsrA in Pseudomonas aeruginosa. J Bacteriol 190:5624-34.
163. Cortes-López H, Juárez-Rodríguez, M., García-Contreras, R., Soto-Hernández, M., & Castillo-Juárez, I. 2020. Old acquaintances in a new role: regulation of bacterial communication systems by fatty acids, p 47-58. In Rai VR, and Bai, J.A. (ed), Regulation of Bacterial Communication Systems by Fatty Acids, 1st ed. Taylor & Francis Group, Boca Raton.
164. Abd-Alla MH, Bashandy SR. 2012. Production of quorum sensing inhibitors in growing onion bulbs infected with Pseudomonas aeruginosa E (HQ324110). ISRN Microbiol 2012:161890.
165. Inoue T, Shingaki R, Fukui K. 2008. Inhibition of swarming motility of Pseudomonas aeruginosa by branched-chain fatty acids. FEMS Microbiol Lett 281:81-6.
166. Juárez-Rodríguez MM, Cortes-López H, García-Contreras R, González-Pedrajo B, Díaz-Guerrero M, Martínez-Vázquez M, Rivera-Chávez JA, Soto-Hernández RM, Castillo-Juárez I. 2020. Tetradecanoic acids with anti-virulence properties increase the pathogenicity of Pseudomonas aeruginosa in a murine cutaneous infection model. Front Cell Infect Microbiol 10:597517.
167. Prateeksha P, Sharma V, Nagpoore N, Jadaun V, Rao C, Singh B. 2023. Bacteria-responsive multidrug delivery nanosystem for combating long-term biofilm-associated Infections. Adv Funct Mater 33:2214852.
168. Kumar S, Paliya BS, Singh BN. 2022. Superior inhibition of virulence and biofilm formation of Pseudomonas aeruginosa PAO1 by phyto-synthesized silver nanoparticles through anti-quorum sensing activity. Microb Pathog 170:105678.
169. Prateeksha P, Bajpai R, Rao CV, Upreti DK, Barik SK, Singh BN. 2021. Chrysophanol-functionalized silver nanoparticles for anti-adhesive and anti-biofouling coatings to prevent urinary catheter-associated infections. ACS Appl Nano Mater 4:1512-1528.
170. Prateeksha, Rao CV, Das AK, Barik SK, Singh BN. 2019. ZnO/Curcumin nanocomposites for enhanced inhibition of Pseudomonas aeruginosa virulence via LasR-RhlR quorum sensing systems. Mol Pharm 16:3399-3413.
171. Rémy B, Mion S, Plener L, Elias M, Chabrière E, Daudé D. 2018. Interference in bacterial quorum sensing: a biopharmaceutical perspective. Front Pharmacol 9:203.
172. Scoffone VC, Trespidi G, Chiarelli LR, Barbieri G, Buroni S. 2019. Quorum sensing as antivirulence target in cystic fibrosis pathogens. Int J Mol Sci 20.