簡易檢索 / 詳目顯示

研究生: 洪偉喬
Hong, Wei-qiao
論文名稱: Testing the Equality of Multiple Regression Curves Based on Local Polynomial Regression
迴歸曲線相似性檢定方法
指導教授: 黃禮珊
Huang, Li-Shan
口試委員: 陳宏
Chen, H
洪志真
Shiau, J.-J. H.
學位類別: 碩士
Master
系所名稱: 理學院 - 統計學研究所
Institute of Statistics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 36
中文關鍵詞: Analysis of CovarianceLocal polynomial regression
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In our study we extend the classical Analysis of Covariance (ANCOVA) for testing parallelism of lines between groups to nonparametric ANCOVA for testing the equality or parallelism of multiple regression curves. Our approach is based on local polynomial regression and extends the nonparametric F-tests in Huang and Chen (2008). We derive explicit expressions for the nonparametric ANCOVA table and develop nonparametric F-tests for testing the equality or parallelism of multiple curves based on assumptions of a common range of design points, homoscedastic Gaussian errors, and the same bandwidth and kernel function for fitting the curves. Simulation results indicate that the new approach is comparable to existing procedures.


    In our study we extend the classical Analysis of Covariance (ANCOVA) for testing parallelism of lines between groups to nonparametric ANCOVA for testing the equality or parallelism of multiple regression curves. Our approach is based on local polynomial regression and extends the nonparametric F-tests in Huang and Chen (2008). We derive explicit expressions for the nonparametric ANCOVA table and develop nonparametric F-tests for testing the equality or parallelism of multiple curves based on assumptions of a common range of design points, homoscedastic Gaussian errors, and the same bandwidth and kernel function for fitting the curves. Simulation results indicate that the new approach is comparable to existing procedures.

    Contents 1 INTRODUCTION 1 2 BACKGROUND 3 2.1 Analysis of variance and analysis of covariance . . . . . . . . . . . . . . . . . 3 2.2 Local polynomial regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.3 Asymptotic projection matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 NONPARAMETRIC ANALYSIS OF COVARIANCE 7 3.1 Test of equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2 Test of parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4 NUMERICAL RESULTS 14 4.1 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.2 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5 DISCUSSION 18 Appendix 19 References 29

    References
    [1] BEHSETA, S., KASS, R. E., MOORMAN, D. E., and OlSON, C. R. (2007). Testing
    equality of several functions: Analysis of single-unit ring-rate curves across multiple
    experimental conditions. Statist. Med. 26, 39583975.
    [2] BOWMAN, A. W. and AZZALINI, A. (1997). Applied Smoothing Techniques for Data
    Analysis: the Kernel Approach with S-Plus Illustrations. Oxford University Press, Oxford.
    [3] BOWMAN, A. W. and YOUNG, S. (1996). Graphical comparison of nonparametric
    curves. Appl. Statist. 45, 8398.
    [4] CHAO, C. P. (2012). A simulation study of bandwidth selection for local regression
    using full-information criteria. Master thesis, Nation Tsing Hua University, Hsinchu,
    Taiwan.
    [5] DELGADO, M. A. (1993). Testing the equality of nonparametric regression curves.
    Statist. Probab. Lett. 17, 199204.
    [6] FAN, J. and GIJBELS, I. (1996). Local Polynomial Modelling and Its Applications.
    Chapman and Hall, London.
    [7] GORGENS, T. (2002). Nonparametric comparison of regression curves by local linear
    tting. Statist. Probab. Lett. 60, 81-89.
    [8] HALL, P. and HART, J. D. (1990). Bootstrap test for dierence between means in
    nonparametric regression. J. Amer. Statist. Assoc. 85, 10391049.
    [9] HARDLE, W. and MARRON, J. S. (1990). Semiparametric comparison of regression
    curves. Ann. Statist. 18, 6389.
    [10] HUANG, L.-S. and CHEN, J. (2008). Analysis of variance, coecient of determination,
    and F-test for local polynomial regression. Ann. Statist. 36, 2085-2109.
    [11] HUANG, L.-S. and SU, H. (2009). Nonparametric F-tests for nested global and local
    polynomial models. J. Stat. Plan. Infer. 139, 1372-1380.
    [12] KING, E. C., HART, J. D., and WEHRLY, T. E. (1991). Testing the equality of two
    regression curves using linear smoothers. Statist. Probab. Lett. 12, 239247.
    29
    [13] KULASEKERA, K. B. (1995). Comparison of regression curves using quasi-residuals.
    J. Amer. Statist. Assoc. 90, 10851093.
    [14] MUNK, A. and DETTE, H. (1998). Nonparametric comparison of several regression
    functions: Exact and asymptotic theory. Ann. Statist. 26, 23392368.
    [15] NEUMEYER, N. and DETTE, H. (2003). Nonparametric comparison of regression
    curves: an empirical process approach. Ann. Statist. 31, 880-920.
    [16] SCHEIKE, T. H. (2000). Comparison of non-parametric regression functions through
    their cumulatives Statist. Probab. Lett. 46, 2132.
    [17] SEBER, G. A. F. and LEE, A. J. (2003) Linear Regression Analysis, Second Edition,
    John Wiley & Sons, Inc., Hoboken, NJ, USA.
    [18] SRIHERA, R. and STUTE, W. (2010). Nonparametric comparison of regression functions
    . J. Multivariate. Anal. 101, 2039-2059.
    [19] YOUNG, S. G. and BOWMAN, A. W. (1995). Nonparametric analysis of covariance.
    Biometrics. 51, 920931.
    30

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE