研究生: |
洪偉喬 Hong, Wei-qiao |
---|---|
論文名稱: |
Testing the Equality of Multiple Regression Curves Based on Local Polynomial Regression 迴歸曲線相似性檢定方法 |
指導教授: |
黃禮珊
Huang, Li-Shan |
口試委員: |
陳宏
Chen, H 洪志真 Shiau, J.-J. H. |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 統計學研究所 Institute of Statistics |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 36 |
中文關鍵詞: | Analysis of Covariance 、Local polynomial regression |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
In our study we extend the classical Analysis of Covariance (ANCOVA) for testing parallelism of lines between groups to nonparametric ANCOVA for testing the equality or parallelism of multiple regression curves. Our approach is based on local polynomial regression and extends the nonparametric F-tests in Huang and Chen (2008). We derive explicit expressions for the nonparametric ANCOVA table and develop nonparametric F-tests for testing the equality or parallelism of multiple curves based on assumptions of a common range of design points, homoscedastic Gaussian errors, and the same bandwidth and kernel function for fitting the curves. Simulation results indicate that the new approach is comparable to existing procedures.
In our study we extend the classical Analysis of Covariance (ANCOVA) for testing parallelism of lines between groups to nonparametric ANCOVA for testing the equality or parallelism of multiple regression curves. Our approach is based on local polynomial regression and extends the nonparametric F-tests in Huang and Chen (2008). We derive explicit expressions for the nonparametric ANCOVA table and develop nonparametric F-tests for testing the equality or parallelism of multiple curves based on assumptions of a common range of design points, homoscedastic Gaussian errors, and the same bandwidth and kernel function for fitting the curves. Simulation results indicate that the new approach is comparable to existing procedures.
References
[1] BEHSETA, S., KASS, R. E., MOORMAN, D. E., and OlSON, C. R. (2007). Testing
equality of several functions: Analysis of single-unit ring-rate curves across multiple
experimental conditions. Statist. Med. 26, 39583975.
[2] BOWMAN, A. W. and AZZALINI, A. (1997). Applied Smoothing Techniques for Data
Analysis: the Kernel Approach with S-Plus Illustrations. Oxford University Press, Oxford.
[3] BOWMAN, A. W. and YOUNG, S. (1996). Graphical comparison of nonparametric
curves. Appl. Statist. 45, 8398.
[4] CHAO, C. P. (2012). A simulation study of bandwidth selection for local regression
using full-information criteria. Master thesis, Nation Tsing Hua University, Hsinchu,
Taiwan.
[5] DELGADO, M. A. (1993). Testing the equality of nonparametric regression curves.
Statist. Probab. Lett. 17, 199204.
[6] FAN, J. and GIJBELS, I. (1996). Local Polynomial Modelling and Its Applications.
Chapman and Hall, London.
[7] GORGENS, T. (2002). Nonparametric comparison of regression curves by local linear
tting. Statist. Probab. Lett. 60, 81-89.
[8] HALL, P. and HART, J. D. (1990). Bootstrap test for dierence between means in
nonparametric regression. J. Amer. Statist. Assoc. 85, 10391049.
[9] HARDLE, W. and MARRON, J. S. (1990). Semiparametric comparison of regression
curves. Ann. Statist. 18, 6389.
[10] HUANG, L.-S. and CHEN, J. (2008). Analysis of variance, coecient of determination,
and F-test for local polynomial regression. Ann. Statist. 36, 2085-2109.
[11] HUANG, L.-S. and SU, H. (2009). Nonparametric F-tests for nested global and local
polynomial models. J. Stat. Plan. Infer. 139, 1372-1380.
[12] KING, E. C., HART, J. D., and WEHRLY, T. E. (1991). Testing the equality of two
regression curves using linear smoothers. Statist. Probab. Lett. 12, 239247.
29
[13] KULASEKERA, K. B. (1995). Comparison of regression curves using quasi-residuals.
J. Amer. Statist. Assoc. 90, 10851093.
[14] MUNK, A. and DETTE, H. (1998). Nonparametric comparison of several regression
functions: Exact and asymptotic theory. Ann. Statist. 26, 23392368.
[15] NEUMEYER, N. and DETTE, H. (2003). Nonparametric comparison of regression
curves: an empirical process approach. Ann. Statist. 31, 880-920.
[16] SCHEIKE, T. H. (2000). Comparison of non-parametric regression functions through
their cumulatives Statist. Probab. Lett. 46, 2132.
[17] SEBER, G. A. F. and LEE, A. J. (2003) Linear Regression Analysis, Second Edition,
John Wiley & Sons, Inc., Hoboken, NJ, USA.
[18] SRIHERA, R. and STUTE, W. (2010). Nonparametric comparison of regression functions
. J. Multivariate. Anal. 101, 2039-2059.
[19] YOUNG, S. G. and BOWMAN, A. W. (1995). Nonparametric analysis of covariance.
Biometrics. 51, 920931.
30