簡易檢索 / 詳目顯示

研究生: 王信智
Wang, Hsin-Chih
論文名稱: 以二氧化碳膨脹液體進行微藻油萃取
Using CO2-Expanded Liquid as a Green Solvent in Microalgae Lipid Extraction
指導教授: 談駿嵩
口試委員: 陳延平
李明哲
張傑明
凌永健
張嘉修
吳榮宗
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 63
中文關鍵詞: 萃取油脂微藻CO2膨脹液體生質柴油
外文關鍵詞: Extraction, Lipid, Microalgae, CO2-expanded ethanol, Biodiesel
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以微藻作為原料進行生質柴油前驅油脂之前瞻性萃取製程,以連續式萃取設備配搭CO2膨脹乙醇(CO2-expanded Ethanol)為溶劑自名稱為Schizochytrium sp.之微藻中萃取微藻油脂。CO2膨脹乙醇的擴散係數高於一般液體10-100倍,即質量傳遞阻力遠較液體為小。此外,利用CO2膨脹乙醇亦可降低溶劑之表面張力,使之更容易滲入到藻類中萃取油脂。由於CO2在常溫常壓下屬氣態,在萃取完成後可藉由減壓與其他物質分離,剩餘乙醇可做為後續轉酯化之反應物,過程中不造成環保及安全上的問題,也不會影響微藻中其他具營養成分產物之性質。
    藉由因子設計法,在實驗當中比較各操作變因對連續式萃取之影響,其中以溫度與壓力對產率影響最為顯著,在低溫高壓環境下所達到之高體積膨脹率可大幅提升乙醇的擴散速率,有助於溶劑擴散進入微藻細胞並加速油脂溶解速率。實驗結果顯示,在乙醇流速為1 ml/min、CO2流速為6 ml/min、溫度為40 oC及壓力為1000 psi的條件下,可在10分鐘內萃出總油脂量之70%,在30分鐘達到87%。若與48小時索式萃取(Soxhlet Extraction)相比,CO2膨脹乙醇可大幅提高萃取速率,所使用的有機溶劑量也可大幅減少;若與未添加CO2的高壓連續式萃取相比,在相同10分鐘內也增加了近7倍的萃取量,可看出CO2膨脹乙醇非常適用於微藻油脂萃取,為一極具發展潛力之萃取製程。


    Biofuel produced from microalgae is considered as one of potential renewable energies. To effectively produce biodiesel, lipid in microalgae is required to be extracted first before transesterification. However, the microalgal biofuel production is still not so economical until now, mainly due to large energy consumed in the lipid extraction from algal cells stage. Therefore, an effectivet extraction method is needed to propose.
    In this study, CO2-expanded ethanol is used as the extraction solvent in a continuous operation mode. Microalgae named Schizochytrium sp. was chose as the biomass for lipid extraction. The so-called CO2-expanded ethanol is that the volume of ethanol would be expanded after the dissolution of pressurized CO2. Because CO2-expanded ethanol possesses higher mass transfer coefficient as well as lower surface tension and viscosity as compared with ethanol itself, it can easily penetrate into microalgal cell to extract lipid. The experimental results show that the yield of lipid from 10 g of the microalgae sample at 313 K is 7 wt% within 10 minutes when pure ethanol is used as the extraction solvent. The yield of lipids, however, is increased to 70 wt% using CO2-expanded ethanol with 1000 psi of CO2 in ethanol extraction at 313 K within 10 minutes. The factorial design technique with the variables as pressure, temperature, ethanol flow rate and CO2 flow rate is used to determine the most dominant variables affecting the extraction outcomes. The extracted lipids can be pressurized and heated to the desired pressure and temperature to carry out transesterification to produce biodiesel after the extraction stage. The proposed technique is proven to be promising to produce biodiesel with less operation time and less energy consumption.

    摘要 1 目錄 3 圖目錄 5 表目錄 6 第一章 緒論 7 1-1 前言 7 1-2 生質能源發展 8 第二章 文獻回顧 10 2-1 微藻發展 10 2-2 超臨界CO2萃取應用與微藻萃取技術 14 2-3 生質柴油製備 17 2-4 超臨界轉酯化 24 第三章 實驗裝置與操作流程 26 3-1 實驗流程及操作說明 26 3-1-1 微藻油脂萃取 26 3-1-2 萃取物分析 29 3-1-3 轉酯化反應 30 3-2 實驗儀器 31 3-3 實驗藥品 33 第四章 實驗結果與討論 34 4-1 萃取物分析 34 4-2 索式萃取與一般連續式萃取 37 4-3 CO2膨脹液體萃取 38 4-3-1 CO2膨脹乙醇操作變因 38 4-3-2 利用因子設計實驗分析30分鐘溶出量操作變因 40 4-3-3 利用因子設計實驗分析10分鐘產率操作變因 47 4-3-4 壓力對產率之影響 51 4-3-5 流速比例對產率之影響 53 4-4 最適化CO2膨脹乙醇萃取條件 54 4-5 固體觸媒轉酯化 55 第五章 結論 57 參考文獻 58

    Ahmad, A. L., Yasin, N. H. M., Derek, C. J. C., Lim J. K., 2011. Microalgae As a Sustainable Energy Source for Biodiesel Production: A Review. Renewable and Sustainable Energy Reviews 15, 584-593.
    Anastopoulos, G., Zannikou, Y., Stournas S., Kalligeros, S., 2009. Transesterification of Vegetable Oils with Ethanol and Characterization of The Key Fuel Properties of Ethyl Esters. Energies 2, 362-376.
    Araujo, G.S., Matos, L.J.B.L., Fernandes, J.O., Cartaxo, S.J.M., Gonçalves, L.R.B., Fernandes, F.A.N., Farias, W.R.L., 2013. Extraction of Lipids from Microalgae by Ultrasound Application: Prospection of The Optimal Extraction Method. Ultrasonics Sonochemistry 20, 95-98.
    Azcan, N., Danisman, A., 2008. Microwave Assisted Transesterification of Rapeseed Oil, Fuel 87, 1781-1788.
    Bahadar, A., Khan, M. B., 2013. Progress in Energy from Microalgae: A Review. Renewable and Sustainable Energy Reviews 27, 128-148
    Barakos, N. S., Papayannakos, Pasias. N., 2008. Transesterification of Triglycerides in High and Low Quality Oil Feeds over an HT2 Hydrotalcite Catalyst. Bioresource Technology 99, 5037-5042.
    Billaud, F., Dominguez, V., Broutin, P., Busson, C., 1995. Production of Hydrocarbons by Pyrolysis of Methyl Esters from Rapeseed Oil. Journal of the American Oil Chemists' Society 72, 1149-1154.
    Bo, X. G., Xiao, M., Cui, L. F., Wei, R. P. Gao, L. J., 2007. Transesterification of Palm Oil with Methanol to Biodiesel over a KF/Al2O3 Heterogeneous Base Catalyst, Energy & Fuels 21, 3109-3112.
    Bokade, V. V., Yadav, G. D., 2007. Synthesis of Bio-Diesel and Bio-Lubricant by Transesterification of Vegetable Oil with Lower and Higher Alcohols over Heteropolyacids Supported by Clay (K-10), Process Safety and Environmental Protection 85,372-377.
    Boyd, A.R., Champagne, P., Mcginn, P.J., Macdougall, K.M., Melanson, J.E., Jessop, P.G., 2012. Switchable Hydrophilicity Solvents for Lipid Extraction from Microalgae for Biofuel Production. Bioresource Technology 118, 628-632.
    Brennan, L., Owende, P., 2010. Biofuels from Microalgae—A Review of Technologies for Production, Processing, and Extractions of Biofuels and Co-Products. Renewable and Sustainable Energy Reviews 14, 557-577.
    Cantrell, D. G., Gillie, L. J., Lee, A. F., Wilson, K., 2005. Structure-reactivity Correlations in MgAl Hydrotalcite Catalysts for Biodiesel Synthesis. Applied Catalysis A: General 287, 183-190.
    Cao, P., Tremblay, A.Y., Dubé, M.A., 2009. Kinetics of Canola Oil Transesterification in A Membrane Reactor. Industrial & Engineering Chemistry Research 48, 2533-2541.
    Cavani, F., Trifiro, F., Vaccari, A., 1991. Hydrotalcite-Type Anionic Clays: Preparation, Properties and Applications. Catalysis Today 11, 173-301.
    Chang, C.J., Chiu, K.-L., Day, C.-Y., 1998. A New Apparatus for The Determination of P-X-Y Diagrams and Henry's Constants in High Pressure Alcohols with Critical Carbon Dioxide. The Journal of Supercritical Fluids 12, 223-237.
    Chen, K. T., Cheng, C. H., Wu, Y. H., Lu, W. C., Lin, Y. H., Lee, H. T., 2013. Continuous Lipid Extraction of Microalgae Using High-pressure Carbon Dioxide. Bioresource Technology 146, 23-26.
    Cho, S.-C., Choi, W.-Y., Oh, S.-H., Lee, C.-G., Seo, Y.-C., Kim, J.-S., Song, C.-H., Kim, G.-V., Lee, S.-Y., Kang, D.-H., Lee, H.-Y., 2012. Enhancement of Lipid Extraction from Marine Microalga, Scenedesmus Associated with High-Pressure Homogenization Process. Journal of Biomedicine and Biotechnology 2012, 6.
    Day, C.-Y., Chang, C.J., Chen, C.-Y., 1996. Phase Equilibrium of Ethanol + CO2 and Acetone + CO2 at Elevated Pressures. Journal of Chemical & Engineering Data 41, 839-843.
    EIA, Annual Energy Outlook 2013, EIA, U. S
    (http://www.eia.gov/forecasts/aeo/pdf/0383(2013).pdf)
    Encinar, J. M., Gonzalez, J. F., Rodriguez, J. J., Tejedor, A., 2002. Biodiesel Fuels from Vegetable Oils: Transesterification of Cynara Cardunculus L. Oils with Ethanol. Energy & Fuels 16, 443-450.
    Feroiu, V., Sima, S., Geana, D., 2013. High Pressure Phase Equilibrium Carbon Dioxide+Ethanol System. UPB Scientific Bulletin, Series B: Chemistry and Materials Science 75(1), 53-62
    Garcia, C. M., Teixeira, S., Marciniuk, L. L., Schuchardt, U., 2008. Transesterification of Soybean Oil Catalyzed by Sulfated Zirconia. Bioresource Technology 99, 6608-6613.
    Grierson, S., Strezov, V., Bray, S., Mummacari, R., Danh, L.T., Foster, N., 2011. Assessment of Bio-Oil Extraction from Tetraselmis Chui Microalgae Comparing Supercritical CO2, Solvent Extraction, and Thermal Processing. Energy & Fuels 26, 248-255.
    Halim, R., Danquah, M.K., Webley, P.A., 2012. Extraction of Oil from Microalgae for Biodiesel Production: A Review. Biotechnology Advances 30, 709-732.
    Heldebrant, D.J., Li, X., Eckert, C.A., Liotta, C.L., Jessop, P.G., 2005. Green Chemistry Reversible Nonpolar-To-Polar Solvent. Nature 436, 1102-1102.
    IPCC, “Renewable Energy Sources And Climate Change Mitigation, Special Report of The Intergovernmental Panel on Climate Change”, 2011.
    IEA, Medium Term Market Report 2012, OECD/IEA, Paris
    (http://www.iea.org/publications/freepublications/publication/mtomr2012web.pdf)
    Jacobson, K., Gopinath, R., Meher, L. C., Dalai, A. K., 2008. Solid Acid Catalyzed Biodiesel Production from Waste Cooking Oil, Applied Catalysis B: Environmental 85, 86-91
    Jessop, P.G., Subramaniam, B., 2007. Gas-Expanded Liquids. Chemical Reviews 107, 2666-2694.
    Kouzu, M. T., Kasuno, M., Yamanaka, T. S., Hidaka, J., 2008. Active Phase of Calcium Oxide Used as Solid Base Catalyst for Transesterification of Soybean Oil with Refluxing Methanol. Applied Catalysis A: General 334, 357-365.
    Li, X., Lu, G. Z., Guo, Y., Wang, Y. Q., Zhang, Z. G., Liu, X. H., Wang, Y. S., 2007. A Novel Solid Superbase of Eu2O3/Al2O3 and Its Catalytic Performance for The Transesterification of Soybean Oil to Biodiesel, Catalysis Communications 8, 1969-1972.
    Lim, J.S., Lee, Y.Y., Chun, H.S., 1994. Phase Equilibria for Carbon Dioxide-ethanol-water System at Elevated Pressures. The Journal of Supercritical Fluids 7, 219-230.
    Lou, W. Y., Zong, M. H., Duan, Z. Q., 2008. Efficient Production of Biodiesel from High Free Fatty Acid-containing Waste Oils Using Various Carbohydrate-derived Solid Acid Catalysts, Bioresource Technology 99, 8752-8758.
    Ma, Z., Shang, Z.-Y., Wang, E.-J., Xu, J.-C., Xu, Q.-Q., Yin, J.-Z., 2012. Biodiesel Production via Transesterification of Soybean Oil Using Acid Catalyst in CO2 Expanded Methanol Liquids. Industrial & Engineering Chemistry Research 51, 12199-12204.
    Makareviciene, V., Skorupskaite, V., Andruleviciute, V., 2013. Biodiesel Fuel from Microalgae-Promising Alternative Fuel for The Future: A Review. Reviews in Environmental Science and Bio/Technology 12, 119-130.
    Makareviciene, V., Lebedevas S., Rapalis, P., Gumbyte, M., Skorupskaite, V., Zaglinskis J., 2014. Performance and Emission Characteristics of Diesel Fuel Containing Microalgae Oil Methyl Esters, Fuel 120, 233-239.
    Mata, T. M., Martins, A. A., Caetano, N. S., 2010. Microalgae for Biodiesel Production and Other Applications: A Review. Renewable and Sustainable Energy Reviews 14, 217-232.
    Mcnichol, J., Macdougall, K., Melanson, J., Mcginn, P., 2012. Suitability of Soxhlet Extraction to Quantify Microalgal Fatty Acids as Determined by Comparison with In Situ Transesterification. Lipids 47, 195-207.
    Miao, X., Wu, Q., 2006. Biodiesel Production from Heterotrophic Microalgal Oil. Bioresource Technology 97, 841-846.
    Mouahid, A., Crampon, C., Toudji, S.-A.A., Badens, E., 2013. Supercritical CO2 Extraction of Neutral Lipids from Microalgae: Experiments and Modelling. The Journal of Supercritical Fluids 77, 7-16.
    Patil, P.D., Gude, V.G., Mannarswamy, A., Cooke, P., Nirmalakhandan, N., Lammers, P., Deng, S., 2012. Comparison of Direct Transesterification of Algal Biomass under Supercritical Methanol and Microwave Irradiation Conditions. Fuel 97, 822-831.
    Prabakaran, P., Ravindran, A.D., 2011. A Comparative Study on Effective Cell Disruption Methods for Lipid Extraction from Microalgae. Letters in Applied Microbiology 53, 150-154.
    Reddy, H. K., Muppaneni, T., Patil, P. D., Ponnusamy, S., Cooke, P., Schaub, T., Deng, S., 2014. Direct Conversion of Wet Algae to Crude Biodiesel under Supercritical Ethanol Conditions 115, Fuel, 720-726.
    Reverchon, E., 1997. Supercritical Fluid Extraction and Fractionation of Essential Oils and Related Products. The Journal of Supercritical Fluids 10, 1-37.
    Reverchon, E., De Marco, I., 2006. Supercritical Fluid Extraction and Fractionation of Natural Matter. The Journal of Supercritical Fluids 38, 146-166.
    Saka, S., Isayama, Y., 2009. A New Process for Catalyst-Free Production of Biodiesel Using Supercritical Methyl Acetate. Fuel 88, 1307-1313.
    Saka, S., Kusdiana, D., 2001. Biodiesel Fuel from Rapeseed Oil as Prepared in Supercritical Methanol. Fuel 80, 225-231.
    Samarasinghe, N., Fernando, S., Lacey, R., Faulkner, W.B., 2012. Algal Cell Rupture Using High Pressure Homogenization as A Prelude yo Oil Extraction. Renewable Energy 48, 300-308.
    Samori, C., Lopez Barreiro, D., Vet, R., Pezzolesi, L., Brilman, D.W.F., Galletti, P., Tagliavini, E., 2013. Effective Lipid Extraction from Algae Cultures Using Switchable Solvents. Green Chemistry 15, 353-356.
    Sathish, A., Sims, R.C., 2012. Biodiesel from Mixed Culture Algae via A Wet Lipid Extraction Procedure. Bioresource Technology 118, 643-647.
    Saydut, Duz, A. M. Z., Kaya, C., Kafadar, A. B., Hamamci, C., 2008. Transesterified Sesame (Sesamum Indicum L.) Seed Oil as A Biodiesel Fuel. Bioresource Technology 99, 6656-6660.
    Schwab, A.W., Bagby, M.O., Freedman, B., 1987. Preparation and Properties of Diesel Fuels from Vegetable Oils. Fuel 66, 1372-1378.
    Silva, C., Soliman, E., Cameron, G., Fabiano, L. A., Seider, W. D., 2014. Commercial-Scale Biodiesel Production from Algae. Industrial & Engineering Chemistry Research 53, 5311-5324.
    Singh, A., Nigam, P.S., Murphy, J.D., 2011. Renewable Fuels from Algae: An Answer to Debatable Land Based Fuels. Bioresource Technology 102, 10-16.
    Smith, B., Greenwell, H.C., Whiting, A., 2009. Catalytic Upgrading of Tri-Glycerides and Fatty Acids to Transport Biofuels. Energy & Environmental Science 2.
    Srivastava, A., Prasad, R., 2000. Triglycerides-Based Diesel Fuels. Renewable and Sustainable Energy Reviews 4, 111-133.
    Umdu, E.S., Tuncer, M., Seker, E., 2009. Transesterification of Nannochloropsis Oculata Microalga’S Lipid to Biodiesel on Al2O3 Supported Cao and Mgo Catalysts. Bioresource Technology 100, 2828-2831.
    Vicente, G., Martinez, M., Aracil, J., 2004. Integrated Biodiesel Production: A Comparison of Different Homogeneous Catalysts Systems. Bioresource Technology 92, 297-305
    Warabi, Y., Kusdiana, D., Saka, S., 2004. Reactivity of Triglycerides and Fatty Acids of Rapeseed Oil in Supercritical Alcohols. Bioresource Technology 91, 283-287.
    Zafiropoulos, N. A., Ngo, H. L., Foglia, T. A., Samulski, E. T., Lin, W. B., 2007. Catalytic Synthesis of Biodiesel from High Free Fatty Acid-containing Feedstocks. Chemical Communications, 3670-3672.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE