研究生: |
蔡函儒 Tsai, Han-Ru |
---|---|
論文名稱: |
使用統計學習方法訓練線性規劃機 Statistical Learning Method for training Linear Programming Machine |
指導教授: |
李雨青
Lee, Yu-Ching |
口試委員: |
冼芻蕘
翁偉泰 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 46 |
中文關鍵詞: | 統計學習 、線性規劃 、LP機 、KKT條件 、LP機的複雜度 |
外文關鍵詞: | Statistical learning, Linear programming, LP machine, KKT condition, Complexity of LP machine |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
統計學習是一門結合統計、最佳化、泛函分析使用資料來預測未來的學問。它已被應用在工業工程及電腦科學等領域。線性規劃是有著線性目標式及線性等式或不等式之數學規劃。但是鮮少有研究估計線性規劃的參數。因此,我們基於統計學習的框架建立了LP機的學習機器且證明解存在及得到KKT條件。進一步,我們將複雜度的概念融入線性規劃機當中並得到線性規劃機的學習邊界。
Statistical learning is a subject that integrates statistics, optimization and functional analysis techniques for using data to predict the future. This subject can be applied in many fields such as industrial engineering and computer science. Linear programming (LP) is a mathematical program design with linear objective function subject to linear equality and inequality constraints. However, studies rarely estimate the LP parameter. We develop a learning machine, namely, LP machine, based on the framework of statistical learning to estimate the unknown LP parameter. We verify the existence of a solution, and derive the Karush-Kuhn-Tucker condition. Furthermore, we incorporate the concept of complexity into the LP machine and investigate its learning bound.
[1] Ahuja, R. K., Orlin, J. B. (2001). "Inverse Optimization ". Operations Research 49, 771-783.
[2] Apostol, T. (1974). "Mathematical Analysis". Pearson Education, New York.
[3] Aster, R., Borchers, B., Thurber, C. (2004)."Parameter Estimation and Inverse Problems". Academic Press.
[4] Bazaraa, M. S., Jarvis, J. J. Sherali, H. D. (2010)."Linear Programming and Network Flows". Wiley-Intersciences, New York.
[5] Bersimas, D., Tsitsiklis, J. N., (1997). "Introduction to Linear Optimization".Athena Scientic.
[6] Bersimas, D., Gupta, V., Paschalids, I. C., (2015). "Data-driven estimation in equalibrium using inverse opimization". Mathematical Programming, 153, 595-633
[7] Burton, D., Toint, P. L. (1992). "On an instance of the inverse shortest paths". Mathematical Programming, 53, 45-61.
[8] Chan, T. C., Craig, T., Lee, T., Sharpe, M. B. (2014). "Generalized inverse multiibjective optimization with application to cancer therapy". Operations Research, 62(3), 680-695.
[9] Chen, W., Tabak, E. (2017). "A data-driven linear programming methodology for optimal transport". manuscript.
[10] Danzig, G. B., Thapa, M. N. (1997). "Linear Programming: Introduction". Springer-Verlag, New York.
[11] Danzig, G. B., Thapa, M. N. (1997). "Linear Programming: Theory and Extensions". Springer-Verlag, New York.
[12] Gal, T. (1995). "Postoptimal Analyses, Parametric Programming, and Related Topics: degeneracy, multicriteria decision making redundacy". Berlin.
[13] Greeberg, H. J., Holder, A. G., Roos, K., Terlaky, T. (1998). "On the dimension of the set of rim perturbations for optimal partition invariance". SIAM Optimization, 9(1), 207-216
[14] Greenberg, H. (1999). "Matrix sensitivity analysis from interior solution of a linear program". INFORMS Journal on Computing, 11(3), 316-327
[15] Gyor, L., Kohler, M., Krz_zak, A., Walk., H. (2002). "A Distribution-Free Theory of Nonoparametric Regression". Springer-Verlag, New York.
[16] Greenberg, H. (2000). "Simutaneous primal-dual right-hand-side sensitivity from a strictly complementarity solution of a linear program". INFORMS Journal on Computing, 11(3), 316-327
[17] Hadigheh, A. G., Terlaky, T. (2006). "Sensitivity analysis in linear optimization: invariant support set intervals". European Journal of Operations Research, 169, 303-315.
[18] Hasatie, T., Tibshirani, R., Friedman, J. (2009). "The Element of Statistical Learning". Springer-Verlag, New York.
[19] Hillier, F. S., Liberman, G. J. (2015). \Introduction to Operations Research". McGraw-Hill, New York.
[20] Koltai, T., Terlaky, T. (2000). "The dierence between the managerial andmathematical interpretation of sensitivity analysis results in linear programming". International Journal of Production Economics, 65, 257-274.
[21] Mohri, M., Rostamizadeh, A., Talwalkar, A. (2012). "Foundation of Machine Learning". The MIT Press, Cambridge.
[22] Mostafa, Y. S., Magdon-Ismail, M., Lin, Hsuan-Tien. (2012). "Learning from Data-A Short Course". AML Book, New York.
[23] Powell, W. B., Ryzhov, Ilya O. (2012)."Optimal Learning". Wiley-Intersciences, New York.
[24] Powell, W. B., Ryzhov, Ilya O. (2012)."Information Collection for linear program with uncertain objective coecient ". SIAM 22(4), 1344-1368.
[25] Rumelhart, D. E., Hinton, G. E., Williams ,R.J. (1986). "Learning internal representations by error propagation. Parallel distributed processing: Explorations in macrostructure of cognition". Vol.I, Badford Books, Cambridge, MA., 318-362.
[26] Rosenblatt, F. (1962). \Principles of Nerodynamics: Percetron and the The-
ory of Brain Mechanics". Spartan Books, Washington.
[27] Rudin, W. (1976). "Principles of Mathemtical Analysis". McGraw-Hill, New York.
[28] Spall, J. (2003). "Introduction to Stochastic Search and Optimization". Wiley, New York.
[29] Tarantola, A. (2005). "Inverse Problem Theory and Methods for Model Parameter Estimation". SIAM
[30] Vapnik, V. (1998). "Statistical Learning Theory". Wiley, New York.
[31] Vapnik, V. (2000). "The Nature of Statistical Learning". Wiley, New York.
[32] Vapnik, V., Chervonenkis, A. (1974). "Theory of Pattern Recognotion(in Russia)". Nauka, Moscow.
[33] Valiant, L., G. (1984) "A theory of the learnable". ACM 27, 1049-1056.
[34] Wang, L. (2009). "Cutting plane algorithms for the inverse mixed integer linear prgramming problem.". Operations Research 37(2), 114-116.