簡易檢索 / 詳目顯示

研究生: 毛敬涵
Mao, Ching-Han
論文名稱: 二維二硫化鉬複合電漿子超材料於可見光感測之應用
Hybridizing 2D-Molybdenum Disulfide with Plasmonic Metamaterials for Ultrasensitive Photodetection in the Visible Region
指導教授: 嚴大任
Yen, Ta-Jen
口試委員: 果尚志
Gwo, Shangjr
呂宥蓉
Lu, Yu-Jung
謝雅萍
Hsieh, Ya-Ping
劉昌樺
Liu, Chang-Hua
學位類別: 博士
Doctor
系所名稱: 工學院 - 前瞻功能材料產業博士學位學程
Ph.D. Program in Prospective Functional Materials Industry
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 96
中文關鍵詞: 電漿子材料二硫化鉬光感測半金屬矽奈米線銀奈米顆粒
外文關鍵詞: Plasmonics, Molybdenum disulfide, Photosensor, Semimetal, Silicon nanowire, Silver nanoparticle
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 二維過渡金屬硫化物擁有多元且適合發展高效能奈米電子元件以及奈米光電元件的物理特性。舉例來說,二硫化鎢擁有高螢光量子轉換效率,二硒化鉬的激子與帶電激子展現出賽曼效應,二硒化鈮在低溫下會展現超導現象等等。傳統半導體材料在進行異質介面設計時必須考量到不同材料之間的晶格結構與鍵結,然而二維過渡金屬硫化物層與層之間是由微弱的凡德瓦力所維繫,再者,每層二維過渡金屬硫化物都滿足八隅體原則,因此,二維過渡金屬硫化物在進行異質結構設計及材料堆疊都十分容易。此外,二維過渡金屬硫化物與現存半導體技術的高匹配性更加速了二維過渡金屬硫化物在近幾年的發展。在眾多的二維過渡金屬硫化物中,二硫化鉬的穩定化性、電子特性以及可見光的光學特性使得它被廣泛的研究。二硫化鉬的物理特性也使得它成為二維過渡金屬硫化物中最適合運用在可見光探測的材料。然而二維二硫化鉬的原子尺度厚度限制了材料的光質交互作用。本論文旨在藉由結合二維二硫化鉬與不同種的電漿子超材料來大幅度增強二硫化鉬在可見光範圍內的光電轉換效率。
    貴金屬奈米結構可以在奈米結構周圍藉由局域表面電漿子共振以及表面電漿子震盪來增益以及侷限入射電磁波。因此,結合二維二硫化鉬與貴金屬奈米結構可以增加散射截面與增益局部光質交互作用。除了電漿子增益以外,基板的不同也會造成二維二硫化鉬的光學與電學特性的不同。懸空的二維二硫化鉬有更強的螢光效應和光柵效應,這些特性有利於增強二維二硫化鉬的光電轉換效率。在本論文的第一個研究中,我們同時利用電漿子增益以及薄膜懸浮的特性來增益二維二硫化鉬光感測器的元件表現。我們複合二維的二硫化鉬、一維的矽奈米線陣列以及零維的奈米銀顆粒來達成高效能光感測複合材料。二維二硫化鉬作為光電轉換材料以及載子通道。一維矽奈米線陣列作為基板支撐二硫化鉬懸浮、提供抗反射功能以及作為增加奈米銀顆粒密度的支架。銀奈米顆粒藉由局域表面電漿子共振來增益入射光的電場強度以及二硫化鉬的光質交互作用。我們的三元複合結構在無背閘極電壓的情況底下可以在532奈米波長雷射入射下響應度達到402.4 安/瓦。由於元件的高響應度以及大元件面積,元件的靈敏度也達到了2.34×1012 瓊斯。
    在我們的第二個研究中,我們設計了一個全由半金屬-二硫化鉬介面所組成的電漿子增益光電感測元件。我們整合了二維二硫化鉬、鉍金屬電極以及鉍金屬電漿子奈米圓盤來增強二硫化鉬光感測器的元件表現。二維過渡金屬硫化物的電極電阻主要源自於與金屬接觸時所產生的費米能階釘扎效應,這會使光電流在流經電極時造成額外耗損並提高元件的耗能。利用鉍金屬的半金屬能帶可以壓抑二維過渡金屬硫化物的費米能階釘扎效應並形成歐姆接觸,因此可以減少光電流耗損。除了貴金屬可以形成表面電漿子外,鉍金屬的介電常數在可見光範圍內也可以形成局域表面電漿子共振。我們設計了一個在二硫化鉬吸收峰共振的鉍金屬奈米圓盤並與二硫化鉬複合,我們的結果顯示二硫化鉬在與奈米圓盤複合後於600 奈米波長的光電轉換效率增強了超過四倍。我們的全半金屬電漿子光感測元件的光響應表現相較二硫化鉬光感測元件增益了690%。元件的靈敏度達到了6.40×1012 瓊斯。本論文展示了利用多功能奈米結構與多功能半金屬可以設計出高效能、低耗能的二維過渡金屬硫化物光電元件,為未來的奈米元件設計提供了一個新的方向。


    Atomically thin transition metal dichalcogenides (TMDCs) have great potential for realizing high-performance nanoelectronic and optoelectronic devices due to their various and intriguing physical properties. For example, WS2 possesses a high photoluminescence quantum efficiency, MoSe2 exhibits Zeeman splitting for the neutral exciton and the trion, and NbSe2 exhibits a superconducting property at low temperatures, etc. Unlike conventional semiconductor materials, which rely on lattice matching and covalent bond formation to generate heterostructure interfaces, the weak Van der Waals force between each TMDC crystal layer allows easy material stacking among different TMDCs. Moreover, the high compatibility of TMDCs with existing semiconductor technologies accelerates the development of the material. Among various TMDC materials, molybdenum disulfide (MoS2) has been intensely studied owing to its chemical stability, electrical properties and optical properties in the visible spectrum. The physical properties of MoS2 make it the most suitable TMDC for visible photodetection. However, there is a detrimental property that hinder the optoelectronic performance of MoS2 photodetectors. The atomically thin nature of monolayer and few-layer MoS2 limits their absorption and light-matter interaction. Therefore, in this dissertation, we investigated two approaches to drastically enhance the optoelectronic performance of MoS2 in the visible spectrum via integrating MoS2 with plasmonic nanostructures.
    Noble metal nanostructures are able to substantially intensify and localize incident electromagnetic field by means of localized surface plasmon resonance (LSPR) or surface plasmon resonance (SPR). Combining MoS2 with plasmonic nanostructures can drastically increase scattering cross section and enhance local light-matter interaction. In addition to plasmonic enhancement, the substrate effect strongly influences the optical and electrical properties of 2D MoS2 as well. Suspended MoS2 has been shown to exhibit higher photoluminescence intensity and strong photogating effect, which can be employed in photodetectors. In our first study, we propose an approach to utilize plasmonic nanostructures and physical suspension for MoS2 photosensing enhancement by hybridizing 2D bilayer MoS2, 1D silicon nanowires (SiNWs) and 0D silver nanoparticles (AgNPs). MoS2 acts as the optoelectronic material and the carrier channel. The SiNW structure acts as a multifunctional substrate which suspends the MoS2 film, provides an anti-reflection property and accommodates more AgNPs. The AgNPs resonate with the incident electromagnetic wave and enhances the light-matter interaction of the surrounding MoS2. The hybrid structure shows a gateless responsivity of 402.4 A/W at a wavelength of 532 nm, which represents the highest value among the ever-reported gateless plasmonic MoS2 photodetector. The great responsivity and large active area results in an exceptional detectivity of 2.34×1012 Jones.
    In our second study, we designed an all-semimetal plasmonic photodetector that consist of monolayer MoS2 integrated with Bi contact electrodes and Bi plasmonic nanodisks. The contact resistance originated from the Fermi-level pinning effect leads to high power consumption and poor photocurrent transport capability in MoS2 photodetectors. By utilizing Bi as the contact metal, the Fermi-level pinning effect at the metal-semiconductor interface is suppressed, which increases response speed and reduces photocurrent loss to contact resistance. Bi can not only suppress the Fermi-level pinning but also excite LSPR in the visible spectrum. The strongly localized electromagnetic field across the interface between Bi plasmonic structures and MoS2 is able to enhance the photon to exciton conversion efficiency over 4 times at 600 nm. Photoresponsivity of this all-semimetal MoS2 photodetector shows a 690% enhancement compared to the pristine device with conventional electrodes. In addition, detectivity of our device reaches 6.40×1012 Jones, which is the highest value reported for plasmonic MoS2 photodetectors. This dissertation demonstrates that integrating TMDCs with multicomponent nanostructures and multifunctional semimetal offers a new approach for realizing high-performance and energy-efficient TMDC optoelectronic devices.

    摘要 III Abstract VI Acknowledgements IX List of Figures XIII List of Tables XX Chapter 1: Introduction 1 Chapter 2: Literature Review 4 2.1 Plasmonic Metamaterials 4 2.2 Two-Dimensional Molybdenum Disulfide 13 2.3 Plasmonic-Enhanced MoS2 Photodetectors 18 Chapter 3: Experimental Methods 29 3.1 Molybdenum Disulfide Fabrication 29 3.1.1 Chemical Vapor Deposition (CVD) 29 3.1.2 Chemical Vapor Reaction (CVR) 29 3.2 SiNW-AgNP Hybrid Fabrication 30 3.2.1 Metal-assisted Chemical Etching Process (MACE) 30 3.2.2 Silver Reduction Process 31 3.3 Bi Nanodisk Array Fabrication 31 3.4 Contact Electrode Fabrication 31 3.5 PMMA Assisted Transfer Process 32 3.6 Structural Characterization 33 3.6.1 Scanning Electron Microscopy (SEM) 33 3.6.2 Transmission Electron Microscopy (TEM) 33 3.6.3 Atomic Force Microscopy (AFM) 33 3.6.4 X-ray Photoelectron Spectroscopy (XPS) 34 3.7 Optical Characterization 34 3.7.1 Raman Spectroscopy 34 3.7.2 Photoluminescence Spectroscopy 34 3.7.3 UV-Visible Spectroscopy 35 3.7.4 Time-resolved Photoluminescence (TRPL) 35 3.8 Optoelectronic Characterization 35 3.9 Numerical Simulation 36 Chapter 4: The 2D MoS2 – 1D SiNW – 0D AgNP Hybrid Photodetector 37 4.1 Motivation and Design 37 4.2 Device Fabrication and Material Characterization 39 4.3 Optical Characterization 47 4.4 Optoelectronic Performance 51 4.5 Summary 59 Chapter 5: Bifunctional Bismuth as Plasmonic Resonator and Ohmic Contact for Ultrasensitive MoS2 Photodetector 61 5.1 Motivation and Design 61 5.2 Device Fabrication and Material Characterization 63 5.3 Optoelectronic Performance 73 5.4 Summary 83 Chapter 6: Conclusions and Future Prospects 85 Bibliography 88

    (1) Smith, D. R.; Padilla, W. J.; Vier, D. C.; Nemat-Nasser, S. C.; Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 2000, 84, 4184-4187. DOI: 10.1103/PhysRevLett.84.4184.
    (2) Wang, S.; Wu, P. C.; Su, V.-C.; Lai, Y.-C.; Chen, M.-K.; Kuo, H. Y.; Chen, B. H.; Chen, Y. H.; Huang, T.-T.; Wang, J.-H.; et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol. 2018, 13, 227-232. DOI: 10.1038/s41565-017-0052-4.
    (3) Hu, M.; Chen, J.; Li, Z.-Y.; Au, L.; Hartland, G. V.; Li, X.; Marquez, M.; Xia, Y. Gold nanostructures: Engineering their plasmonic properties for biomedical applications. Chem. Soc. Rev. 2006, 35, 1084-1094. DOI: 10.1039/B517615H.
    (4) Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W.; Moran, C. H.; Zhang, Q.; Qin, D.; Xia, Y. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 2011, 111, 3669-3712. DOI: 10.1021/cr100275d.
    (5) Atwater, H. A.; Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 2010, 9, 205-213. DOI: 10.1038/nmat2629.
    (6) Mejía-Salazar, J. R.; Oliveira, O. N., Jr. Plasmonic biosensing. Chem. Rev. 2018, 118, 10617-10625. DOI: 10.1021/acs.chemrev.8b00359.
    (7) Somekh, M. G.; Liu, S.; Velinov, T. S.; See, C. W. High-resolution scanning surface-plasmon microscopy. Appl. Opt. 2000, 39, 6279-6287.
    (8) Ma, X.-C.; Dai, Y.; Yu, L.; Huang, B.-B. Energy transfer in plasmonic photocatalytic composites. Light Sci. Appl. 2016, 5, e16017-e16017.
    (9) Ermolaev, G. A.; Stebunov, Y. V.; Vyshnevyy, A. A.; Tatarkin, D. E.; Yakubovsky, D. I.; Novikov, S. M.; Baranov, D. G.; Shegai, T.; Nikitin, A. Y.; Arsenin, A. V. Broadband optical properties of monolayer and bulk MoS2. npj 2D Mater. Appl. 2020, 4, 21.
    (10) Zhang, Y.; Chang, T.-R.; Zhou, B.; Cui, Y.-T.; Yan, H.; Liu, Z.; Schmitt, F.; Lee, J.; Moore, R.; Chen, Y. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotechnol. 2014, 9, 111-115.
    (11) Larentis, S.; Fallahazad, B.; Tutuc, E. Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers. Appl. Phys. Lett. 2012, 101, 223104.
    (12) Das, S.; Appenzeller, J. WSe2 field effect transistors with enhanced ambipolar characteristics. Appl. Phys. Lett. 2013, 103, 103501.
    (13) Chuang, S.; Battaglia, C.; Azcatl, A.; McDonnell, S.; Kang, J. S.; Yin, X.; Tosun, M.; Kapadia, R.; Fang, H.; Wallace, R. M. MoS2 p-type transistors and diodes enabled by high work function MoOx contacts. Nano Lett. 2014, 14, 1337-1342.
    (14) Kufer, D.; Konstantatos, G. Highly sensitive, encapsulated MoS2 photodetector with gate controllable gain and speed. Nano Lett. 2015, 15, 7307-7313. DOI: 10.1021/acs.nanolett.5b02559.
    (15) Ahn, E. C. 2D materials for spintronic devices. npj 2D Mater. Appl. 2020, 4, 17. DOI: 10.1038/s41699-020-0152-0.
    (16) Wang, X.; Shen, X.; Wang, Z.; Yu, R.; Chen, L. Atomic-scale clarification of structural transition of MoS2 upon sodium intercalation. ACS Nano 2014, 8, 11394-11400. DOI: 10.1021/nn505501v.
    (17) Lee, H. S.; Min, S.-W.; Chang, Y.-G.; Park, M. K.; Nam, T.; Kim, H.; Kim, J. H.; Ryu, S.; Im, S. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 2012, 12, 3695-3700. DOI: 10.1021/nl301485q.
    (18) Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805. DOI: 10.1103/PhysRevLett.105.136805.
    (19) Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699-712. DOI: 10.1038/nnano.2012.193.
    (20) Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497-501. DOI: 10.1038/nnano.2013.100.
    (21) Zhang, W.; Huang, J. K.; Chen, C. H.; Chang, Y. H.; Cheng, Y. J.; Li, L. J. High-gain phototransistors based on a CVD MoS2 monolayer. Adv. Mater. 2013, 25, 3456-3461. DOI: 10.1002/adma.201301244.
    (22) Kufer, D.; Nikitskiy, I.; Lasanta, T.; Navickaite, G.; Koppens, F. H.; Konstantatos, G. Hybrid 2D-0D MoS2 -PbS quantum dot photodetectors. Adv. Mater. 2015, 27, 176-180. DOI: 10.1002/adma.201402471.
    (23) Li, L.-W.; Li, Y.-N.; Yeo, T. S.; Mosig, J. R.; Martin, O. J. A broadband and high-gain metamaterial microstrip antenna. Appl. Phys. Lett. 2010, 96, 164101.
    (24) Li, W.; Valentine, J. Metamaterial perfect absorber based hot electron photodetection. Nano Lett. 2014, 14, 3510-3514.
    (25) Wu, C.; Neuner III, B.; John, J.; Milder, A.; Zollars, B.; Savoy, S.; Shvets, G. Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems. J. Opt. 2012, 14, 024005.
    (26) Bitzer, A.; Ortner, A.; Merbold, H.; Feurer, T.; Walther, M. Terahertz near-field microscopy of complementary planar metamaterials: Babinet’s principle. Opt. Express 2011, 19, 2537-2545.
    (27) Monk, P. Finite element methods for Maxwell's equations; Oxford University Press, 2003.
    (28) Viktor, G. V. The electrodynamics of substances with simultaneously negative values of and ε and μ. Sov. phys., Usp. 1968, 10, 509. DOI: 10.1070/PU1968v010n04ABEH003699.
    (29) Shelby, R. A.; Smith, D. R.; Schultz, S. Experimental verification of a negative index of refraction. Science 2001, 292, 77-79. DOI: 10.1126/science.1058847.
    (30) Schurig, D.; Mock, J. J.; Justice, B. J.; Cummer, S. A.; Pendry, J. B.; Starr, A. F.; Smith, D. R. Metamaterial electromagnetic cloak at microwave frequencies. Science 2006, 314, 977-980. DOI: 10.1126/science.1133628.
    (31) Maier, S. A. Plasmonics: Fundamentals and applications; 2007. DOI: 10.1007/0-387-37825-1.
    (32) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.-e.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.
    (33) Chen, F.; Xia, J.; Ferry, D. K.; Tao, N. Dielectric screening enhanced performance in graphene FET. Nano Lett. 2009, 9, 2571-2574. DOI: 10.1021/nl900725u.
    (34) Lerner, M. B.; Matsunaga, F.; Han, G. H.; Hong, S. J.; Xi, J.; Crook, A.; Perez-Aguilar, J. M.; Park, Y. W.; Saven, J. G.; Liu, R.; et al. Scalable production of highly sensitive nanosensors based on graphene functionalized with a designed g protein-coupled receptor. Nano Lett. 2014, 14, 2709-2714. DOI: 10.1021/nl5006349.
    (35) Miao, X.; Tongay, S.; Petterson, M. K.; Berke, K.; Rinzler, A. G.; Appleton, B. R.; Hebard, A. F. High efficiency graphene solar cells by chemical doping. Nano Lett. 2012, 12, 2745-2750. DOI: 10.1021/nl204414u.
    (36) Wan, X.; Long, G.; Huang, L.; Chen, Y. Graphene–a promising material for organic photovoltaic cells. Adv. Mater. 2011, 23, 5342-5358.
    (37) Wang, H.; Maiyalagan, T.; Wang, X. Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications. ACS Catal. 2012, 2, 781-794. DOI: 10.1021/cs200652y.
    (38) Chen, H.; Xu, H.; Wang, S.; Huang, T.; Xi, J.; Cai, S.; Guo, F.; Xu, Z.; Gao, W.; Gao, C. Ultrafast all-climate aluminum-graphene battery with quarter-million cycle life. Sci. Adv. 2017, 3, eaao7233.
    (39) Chen, J.-H.; Jang, C.; Xiao, S.; Ishigami, M.; Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 2008, 3, 206-209. DOI: 10.1038/nnano.2008.58.
    (40) Guo, C. X.; Yang, H. B.; Sheng, Z. M.; Lu, Z. S.; Song, Q. L.; Li, C. M. Layered graphene/quantum dots for photovoltaic devices. Angew. Chem. Int. Ed. 2010, 49, 3014-3017.
    (41) Gmitra, M.; Konschuh, S.; Ertler, C.; Ambrosch-Draxl, C.; Fabian, J. Band-structure topologies of graphene: Spin-orbit coupling effects from first principles. Phys. Rev. B 2009, 80, 235431.
    (42) Nagler, P.; Ballottin, M. V.; Mitioglu, A. A.; Mooshammer, F.; Paradiso, N.; Strunk, C.; Huber, R.; Chernikov, A.; Christianen, P. C.; Schüller, C. Giant magnetic splitting inducing near-unity valley polarization in Van der Waals heterostructures. Nat. Commun. 2017, 8, 1551.
    (43) Yu, Y.; Yu, Y.; Huang, L.; Peng, H.; Xiong, L.; Cao, L. Giant gating tunability of optical refractive index in transition metal dichalcogenide monolayers. Nano Lett. 2017, 17, 3613-3618.
    (44) Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147-150. DOI: 10.1038/nnano.2010.279.
    (45) Lu, Q.; Yu, Y.; Ma, Q.; Chen, B.; Zhang, H. 2D transition‐metal‐dichalcogenide‐nanosheet‐based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Adv. Mater. 2016, 28, 1917-1933.
    (46) Bernardi, M.; Palummo, M.; Grossman, J. C. Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett. 2013, 13, 3664-3670. DOI: 10.1021/nl401544y.
    (47) Gmitra, M.; Fabian, J. Graphene on transition-metal dichalcogenides: A platform for proximity spin-orbit physics and optospintronics. Phys. Rev. B 2015, 92. DOI: 10.1103/PhysRevB.92.155403.
    (48) Hanbicki, A. T.; Chuang, H. J.; Rosenberger, M. R.; Hellberg, C. S.; Sivaram, S. V.; McCreary, K. M.; Mazin, II; Jonker, B. T. Double indirect interlayer exciton in a MoSe2/WSe2 Van der Waals heterostructure. ACS Nano 2018, 12, 4719-4726. DOI: 10.1021/acsnano.8b01369.
    (49) Kuc, A. Low-dimensional transition-metal dichalcogenides; 2014.
    (50) Nalwa, H. S. A review of molybdenum disulfide (MoS2) based photodetectors: From ultra-broadband, self-powered to flexible devices. RSC Adv. 2020, 10, 30529-30602. DOI: 10.1039/D0RA03183F.
    (51) Singh, E.; Singh, P.; Kim, K. S.; Yeom, G. Y.; Nalwa, H. S. Flexible molybdenum disulfide (MoS2) atomic layers for wearable electronics and optoelectronics. ACS Appl. Mater. Interfaces 2019, 11, 11061-11105. DOI: 10.1021/acsami.8b19859.
    (52) Amani, M.; Lien, D.-H.; Kiriya, D.; Xiao, J.; Azcatl, A.; Noh, J.; Madhvapathy Surabhi, R.; Addou, R.; Santosh, K. C.; Dubey, M.; et al. Near-unity photoluminescence quantum yield in MoS2. Science 2015, 350, 1065-1068. DOI: 10.1126/science.aad2114.
    (53) Late, D. J.; Liu, B.; Matte, H. S. S. R.; Dravid, V. P.; Rao, C. N. R. Hysteresis in single-layer MoS2 field effect transistors. ACS Nano 2012, 6, 5635-5641. DOI: 10.1021/nn301572c.
    (54) Li, H.; Wu, J.; Yin, Z.; Zhang, H. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc. Chem. Res. 2014, 47, 1067-1075.
    (55) Liu, K.-K.; Zhang, W.; Lee, Y.-H.; Lin, Y.-C.; Chang, M.-T.; Su, C.-Y.; Chang, C.-S.; Li, H.; Shi, Y.; Zhang, H. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 2012, 12, 1538-1544.
    (56) Laskar, M. R.; Ma, L.; Kannappan, S.; Sung Park, P.; Krishnamoorthy, S.; Nath, D. N.; Lu, W.; Wu, Y.; Rajan, S. Large area single crystal (0001) oriented MoS2. Appl. Phys. Lett. 2013, 102, 252108.
    (57) Mann, J.; Sun, D.; Ma, Q.; Chen, J.-R.; Preciado, E.; Ohta, T.; Diaconescu, B.; Yamaguchi, K.; Tran, T.; Wurch, M. Facile growth of monolayer MoS2 film areas on SiO2. Eur Phys J B 2013, 86, 1-4.
    (58) Wang, Q.; Li, N.; Tang, J.; Zhu, J.; Zhang, Q.; Jia, Q.; Lu, Y.; Wei, Z.; Yu, H.; Zhao, Y.; et al. Wafer-scale highly oriented monolayer MoS2 with large domain sizes. Nano Lett. 2020, 20, 7193-7199. DOI: 10.1021/acs.nanolett.0c02531.
    (59) Kang, K.; Xie, S.; Huang, L.; Han, Y.; Huang, P. Y.; Mak, K. F.; Kim, C.-J.; Muller, D.; Park, J. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 2015, 520, 656-660. DOI: 10.1038/nature14417.
    (60) Xia, F.; Mueller, T.; Lin, Y.-m.; Valdes-Garcia, A.; Avouris, P. Ultrafast graphene photodetector. Nat. Nanotechnol. 2009, 4, 839-843.
    (61) Li, N.; Zhao, P.; Astruc, D. Anisotropic gold nanoparticles: Synthesis, properties, applications, and toxicity. Angew. Chem. Int. Ed. 2014, 53, 1756-1789.
    (62) Iravani, S.; Korbekandi, H.; Mirmohammadi, S. V.; Zolfaghari, B. Synthesis of silver nanoparticles: Chemical, physical and biological methods. Res Pharm Sci 2014, 9, 385.
    (63) Miao, J.; Hu, W.; Jing, Y.; Luo, W.; Liao, L.; Pan, A.; Wu, S.; Cheng, J.; Chen, X.; Lu, W. Surface plasmon-enhanced photodetection in few layer MoS2
    phototransistors with Au nanostructure arrays. Small 2015, 11, 2392-2398. DOI: 10.1002/smll.201403422.
    (64) Li, Y.; DiStefano, J. G.; Murthy, A. A.; Cain, J. D.; Hanson, E. D.; Li, Q.; Castro, F. C.; Chen, X.; Dravid, V. P. Superior plasmonic photodetectors based on Au@MoS2 core–shell heterostructures. ACS Nano 2017, 11, 10321-10329. DOI: 10.1021/acsnano.7b05071.
    (65) Zhang, Y.; He, S.; Guo, W.; Hu, Y.; Huang, J.; Mulcahy, J. R.; Wei, W. D. Surface-plasmon-driven hot electron photochemistry. Chem. Rev. 2017, 118, 2927-2954.
    (66) Torimoto, T.; Horibe, H.; Kameyama, T.; Okazaki, K.-i.; Ikeda, S.; Matsumura, M.; Ishikawa, A.; Ishihara, H. Plasmon-enhanced photocatalytic activity of cadmium sulfide nanoparticle immobilized on silica-coated gold particles. J. Phys. Chem. Lett. 2011, 2, 2057-2062.
    (67) Li, J.; Nie, C.; Sun, F.; Tang, L.; Zhang, Z.; Zhang, J.; Zhao, Y.; Shen, J.; Feng, S.; Shi, H.; et al. Enhancement of the photoresponse of monolayer MoS2 photodetectors induced by a nanoparticle grating. ACS Appl. Mater. Interfaces 2020, 12, 8429-8436. DOI: 10.1021/acsami.9b20506.
    (68) Farzinpour, P.; Sundar, A.; Gilroy, K.; Eskin, Z.; Hughes, R.; Neretina, S. Altering the dewetting characteristics of ultrathin gold and silver films using a sacrificial antimony layer. Nanotechnology 2012, 23, 495604.
    (69) Wu, Z. Q.; Yang, J. L.; Manjunath, N. K.; Zhang, Y. J.; Feng, S. R.; Lu, Y. H.; Wu, J. H.; Zhao, W. W.; Qiu, C. Y.; Li, J. F.; et al. Gap-mode surface-plasmon-enhanced photoluminescence and photoresponse of MoS2. Adv. Mater. 2018, 30, e1706527. DOI: 10.1002/adma.201706527.
    (70) Liu, B.; Zhao, W.; Ding, Z.; Verzhbitskiy, I.; Li, L.; Lu, J.; Chen, J.; Eda, G.; Loh, K. P. Engineering bandgaps of monolayer MoS2 and WS2 on fluoropolymer substrates by electrostatically tuned many‐body effects. Adv. Mater. 2016, 28, 6457-6464.
    (71) Bang, S.; Duong, N. T.; Lee, J.; Cho, Y. H.; Oh, H. M.; Kim, H.; Yun, S. J.; Park, C.; Kwon, M. K.; Kim, J. Y.; et al. Augmented quantum yield of a 2D monolayer photodetector by surface plasmon coupling. Nano Lett. 2018, 18, 2316-2323. DOI: 10.1021/acs.nanolett.7b05060.
    (72) Islam, K. M.; Synowicki, R.; Ismael, T.; Oguntoye, I.; Grinalds, N.; Escarra, M. D. In-plane and out-of-plane optical properties of monolayer, few-layer, and thin-film MoS2 from 190 to 1700 nm and their application in photonic device design. Adv. Photonics Res. 2021, 2, 2000180. DOI: 10.1002/adpr.202000180.
    (73) Lin, Y. C.; Zhang, W.; Huang, J. K.; Liu, K. K.; Lee, Y. H.; Liang, C. T.; Chu, C. W.; Li, L. J. Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale 2012, 4, 6637-6641. DOI: 10.1039/c2nr31833d.
    (74) Lee, J.-U.; Kim, K.; Cheong, H. Resonant Raman and photoluminescence spectra of suspended molybdenum disulfide. 2D Mater. 2017, 2. DOI: 10.1088/2053-1583/2/4/044003.
    (75) Shi, H.; Yan, R.; Bertolazzi, S.; Brivio, J.; Gao, B.; Kis, A.; Jena, D.; Xing, H. G.; Huang, L. Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals. ACS Nano 2013, 7, 1072-1080. DOI: 10.1021/nn303973r.
    (76) Wang, R.; Ruzicka, B. A.; Kumar, N.; Bellus, M. Z.; Chiu, H.-Y.; Zhao, H. Ultrafast and spatially resolved studies of charge carriers in atomically thin molybdenum disulfide. Phys. Rev. B 2012, 86. DOI: 10.1103/PhysRevB.86.045406.
    (77) Chaste, J.; Missaoui, A.; Huang, S.; Henck, H.; Ben Aziza, Z.; Ferlazzo, L.; Naylor, C.; Balan, A.; Johnson, A. T. C.; Braive, R.; et al. Intrinsic properties of suspended MoS2 on SiO2/Si pillar arrays for nanomechanics and optics. ACS Nano 2018, 12, 3235-3242. DOI: 10.1021/acsnano.7b07689.
    (78) Howell, S. L.; Jariwala, D.; Wu, C.-C.; Chen, K.-S.; Sangwan, V. K.; Kang, J.; Marks, T. J.; Hersam, M. C.; Lauhon, L. J. Investigation of band-offsets at monolayer–multilayer MoS2 junctions by scanning photocurrent microscopy. Nano Lett. 2015, 15, 2278-2284. DOI: 10.1021/nl504311p.
    (79) Tsai, D.-S.; Liu, K.-K.; Lien, D.-H.; Tsai, M.-L.; Kang, C.-F.; Lin, C.-A.; Li, L.-J.; He, J.-H. Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments. ACS Nano 2013, 7, 3905-3911. DOI: 10.1021/nn305301b.
    (80) Wang, W.; Klots, A.; Prasai, D.; Yang, Y.; Bolotin, K. I.; Valentine, J. Hot electron-based near-infrared photodetection using bilayer MoS2. Nano Lett. 2015, 15, 7440-7444. DOI: 10.1021/acs.nanolett.5b02866.
    (81) Li, H.; Wu, J.; Yin, Z.; Zhang, H. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc. Chem. Res. 2014, 47, 1067-1075. DOI: 10.1021/ar4002312.
    (82) Lee, C.; Yan, H.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695-2700. DOI: 10.1021/nn1003937.
    (83) Yu, Y.; Nam, G. H.; He, Q.; Wu, X. J.; Zhang, K.; Yang, Z.; Chen, J.; Ma, Q.; Zhao, M.; Liu, Z.; et al. High phase-purity 1T'-MoS2- and 1T'-MoSe2-layered crystals. Nat. Chem. 2018, 10, 638-643. DOI: 10.1038/s41557-018-0035-6.
    (84) Huang, Z.; Geyer, N.; Werner, P.; de Boor, J.; Gosele, U. Metal-assisted chemical etching of silicon: A review. Adv. Mater. 2011, 23, 285-308. DOI: 10.1002/adma.201001784.
    (85) Lee, B. S.; Lin, P. C.; Lin, D. Z.; Yen, T. J. Rapid biochemical mixture screening by three-dimensional patterned multifunctional substrate with ultra-thin layer chromatography (UTLC) and surface enhanced Raman scattering (SERS). Sci. Rep. 2018, 8, 516. DOI: 10.1038/s41598-017-18967-7.
    (86) Kondekar, N. P.; Boebinger, M. G.; Woods, E. V.; McDowell, M. T. In situ XPS investigation of transformations at crystallographically oriented MoS2 interfaces. ACS Appl. Mater. Interfaces 2017, 9, 32394-32404. DOI: 10.1021/acsami.7b10230.
    (87) Prieto, P.; Nistor, V.; Nouneh, K.; Oyama, M.; Abd-Lefdil, M.; Díaz, R. XPS study of silver, nickel and bimetallic silver–nickel nanoparticles prepared by seed-mediated growth. Appl. Surf. Sci. 2012, 258, 8807-8813. DOI: 10.1016/j.apsusc.2012.05.095.
    (88) Baker, M. A.; Gilmore, R.; Lenardi, C.; Gissler, W. XPS investigation of preferential sputtering of S from MoS2 and determination of MoSx stoichiometry from Mo and S peak positions. Appl. Surf. Sci. 1999, 150, 255-262. DOI: 10.1016/S0169-4332(99)00253-6.
    (89) Dhyani, V.; Das, S. High-speed scalable silicon-MoS2 p-n heterojunction photodetectors. Sci. Rep. 2017, 7, 44243. DOI: 10.1038/srep44243.
    (90) Lloyd, D.; Liu, X.; Christopher, J. W.; Cantley, L.; Wadehra, A.; Kim, B. L.; Goldberg, B. B.; Swan, A. K.; Bunch, J. S. Band gap engineering with ultralarge biaxial strains in suspended monolayer MoS2. Nano Lett. 2016, 16, 5836-5841. DOI: 10.1021/acs.nanolett.6b02615.
    (91) Scheuschner, N.; Ochedowski, O.; Kaulitz, A.-M.; Gillen, R.; Schleberger, M.; Maultzsch, J. Photoluminescence of freestanding single- and few-layer MoS2. Phys. Rev. B 2014, 89. DOI: 10.1103/PhysRevB.89.125406.
    (92) Lanzillo, N. A.; Glen Birdwell, A.; Amani, M.; Crowne, F. J.; Shah, P. B.; Najmaei, S.; Liu, Z.; Ajayan, P. M.; Lou, J.; Dubey, M.; et al. Temperature-dependent phonon shifts in monolayer MoS2. Appl. Phys. Lett. 2013, 103. DOI: 10.1063/1.4819337.
    (93) Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The optical properties of metal nanoparticles:  The influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003, 107, 668-677. DOI: 10.1021/jp026731y.
    (94) Fang, H.; Hu, W. Photogating in low dimensional photodetectors. Adv. Sci. 2017, 4, 1700323. DOI: 10.1002/advs.201700323.
    (95) Lee, J. E.; Ahn, G.; Shim, J.; Lee, Y. S.; Ryu, S. Optical separation of mechanical strain from charge doping in graphene. Nat. Commun. 2012, 3, 1024. DOI: 10.1038/ncomms2022.
    (96) Kirkpatrick, S. Percolation and conduction. Rev. Mod. Phys. 1973, 45, 574-588. DOI: 10.1103/RevModPhys.45.574.
    (97) Peng, K. Q.; Lee, S. T. Silicon nanowires for photovoltaic solar energy conversion. Adv. Mater. 2011, 23, 198-215. DOI: 10.1002/adma.201002410.
    (98) Sriram, P.; Wen, Y.-P.; Manikandan, A.; Hsu, K.-C.; Tang, S.-Y.; Hsu, B.-W.; Chen, Y.-Z.; Lin, H.-W.; Jeng, H.-T.; Chueh, Y.-L.; et al. Enhancing quantum yield in strained MoS2 bilayers by morphology-controlled plasmonic nanostructures toward superior photodetectors. Chem. Mater. 2020, 32, 2242-2252. DOI: 10.1021/acs.chemmater.9b02886.
    (99) Choi, W.; Cho, M. Y.; Konar, A.; Lee, J. H.; Cha, G.-B.; Hong, S. C.; Kim, S.; Kim, J.; Jena, D.; Joo, J.; et al. High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Adv. Mater. 2012, 24, 5832-5836. DOI: 10.1002/adma.201201909.
    (100) Tung, R. T. The physics and chemistry of the Schottky barrier height. Appl. Phys. Rev. 2014, 1, 011304. DOI: 10.1063/1.4858400.
    (101) Shen, P.-C.; Su, C.; Lin, Y.; Chou, A.-S.; Cheng, C.-C.; Park, J.-H.; Chiu, M.-H.; Lu, A.-Y.; Tang, H.-L.; Tavakoli, M. M.; et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 2021, 593, 211-217. DOI: 10.1038/s41586-021-03472-9.
    (102) Gong, C.; Colombo, L.; Wallace, R. M.; Cho, K. The unusual mechanism of partial Fermi level pinning at metal–MoS2 interfaces. Nano Lett. 2014, 14, 1714-1720. DOI: 10.1021/nl403465v.
    (103) Werner, W. S. M.; Glantschnig, K.; Ambrosch-Draxl, C. Optical constants and inelastic electron-scattering data for 17 elemental metals. J. Phys. Chem. Ref. Data 2009, 38, 1013-1092. DOI: 10.1063/1.3243762.
    (104) Lan, H.-Y.; Hsieh, Y.-H.; Chiao, Z.-Y.; Jariwala, D.; Shih, M.-H.; Yen, T.-J.; Hess, O.; Lu, Y.-J. Gate-tunable plasmon-enhanced photodetection in a monolayer MoS2 phototransistor with ultrahigh photoresponsivity. Nano Lett. 2021, 21, 3083-3091. DOI: 10.1021/acs.nanolett.1c00271.
    (105) Dumcenco, D.; Ovchinnikov, D.; Marinov, K.; Lazić, P.; Gibertini, M.; Marzari, N.; Sanchez, O. L.; Kung, Y.-C.; Krasnozhon, D.; Chen, M.-W.; et al. Large-area epitaxial monolayer MoS2. ACS Nano 2015, 9, 4611-4620. DOI: 10.1021/acsnano.5b01281.
    (106) Kim, C.; Moon, I.; Lee, D.; Choi, M. S.; Ahmed, F.; Nam, S.; Cho, Y.; Shin, H.-J.; Park, S.; Yoo, W. J. Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides. ACS Nano 2017, 11, 1588-1596. DOI: 10.1021/acsnano.6b07159.
    (107) Walker, E. S.; Na, S. R.; Jung, D.; March, S. D.; Kim, J.-S.; Trivedi, T.; Li, W.; Tao, L.; Lee, M. L.; Liechti, K. M.; et al. Large-area dry transfer of single-crystalline epitaxial bismuth thin films. Nano Lett. 2016, 16, 6931-6938. DOI: 10.1021/acs.nanolett.6b02931.
    (108) Wu, J.-Y.; Chun, Y. T.; Li, S.; Zhang, T.; Wang, J.; Shrestha, P. K.; Chu, D. Broadband MoS2 field-effect phototransistors: Ultrasensitive visible-light photoresponse and negative infrared photoresponse. Adv. Mater. 2018, 30, 1705880. DOI: 10.1002/adma.201705880.
    (109) Toudert, J.; Serna, R.; Jiménez de Castro, M. Exploring the optical potential of nano-bismuth: Tunable surface plasmon resonances in the near ultraviolet-to-near infrared range. J. Phys. Chem. C 2012, 116, 20530-20539. DOI: 10.1021/jp3065882.
    (110) Toudert, J.; Serna, R.; Camps, I.; Wojcik, J.; Mascher, P.; Rebollar, E.; Ezquerra, T. A. Unveiling the far infrared-to-ultraviolet optical properties of bismuth for applications in plasmonics and nanophotonics. J. Phys. Chem. C 2017, 121, 3511-3521. DOI: 10.1021/acs.jpcc.6b10331.
    (111) Chen, Z.; Li, X.; Wang, J.; Tao, L.; Long, M.; Liang, S.-J.; Ang, L. K.; Shu, C.; Tsang, H. K.; Xu, J.-B. Synergistic effects of plasmonics and electron trapping in graphene short-wave infrared photodetectors with ultrahigh responsivity. ACS Nano 2017, 11, 430-437. DOI: 10.1021/acsnano.6b06172.
    (112) Luo, F.; Zhu, M.; tan, Y.; Sun, H.; Luo, W.; Peng, G.; Zhu, Z.; Zhang, X.-A.; Qin, S. High responsivity graphene photodetectors from visible to near-infrared by photogating effect. AIP Adv. 2018, 8, 115106. DOI: 10.1063/1.5054760.
    (113) Ghatak, S.; Pal, A. N.; Ghosh, A. Nature of electronic states in atomically thin MoS2 field-effect transistors. ACS Nano 2011, 5, 7707-7712. DOI: 10.1021/nn202852j.
    (114) Mao, C.-H.; Dubey, A.; Lee, F.-J.; Chen, C.-Y.; Tang, S.-Y.; Ranjan, A.; Lu, M.-Y.; Chueh, Y.-L.; Gwo, S.; Yen, T.-J. An ultrasensitive gateless photodetector based on the 2D bilayer MoS2–1D Si nanowire–0D Ag nanoparticle hybrid structure. ACS Appl. Mater. Interfaces 2021, 13, 4126-4132. DOI: 10.1021/acsami.0c15819.

    QR CODE