研究生: |
莊景勝 Juang Jing Sheng |
---|---|
論文名稱: |
ㄧ個非絕熱管狀反應器模型平衡解路徑上的實分歧與Hopf分歧問題探討 Numerical Investigation for Real Bifurcation and Hopf Bifurcation Problems of Steady-State Solution Paths of A Non-adiabatic Tubular Reactor Model |
指導教授: |
簡國清
Jen Kuo Ching |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
南大校區系所調整院務中心 - 應用數學系所 應用數學系所(English) |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 131 |
中文關鍵詞: | 實分歧點 、Hopf分歧點 、打靶法 、Rung-Kutta積分公式 、牛頓迭代法 、隱函數定理 、Liapunov-Schmidt降階法 、切線猜測法 、割線猜測法 、虛擬弧長延拓法 、解分支 、分歧圖 |
外文關鍵詞: | Real bifurcation points, Hopf bifurcation points, Shooting method, Rung-Kutta integral formula, Newton's interative method, Implicit function theorem, Liapunov-Schmidt reduction method, Tangent-predictor method, Secant-predictor method, Pseudo-arclength continuation method, Solution branch, Bifurcation diagram |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文主要在探討一個非絕熱管狀反應器模型之平衡解路徑上的實分歧點和Hopf分歧點與其分歧解路徑﹒
我們將利用Hopf分歧定理﹑打靶法﹑Rung-Kutta積分公式和牛頓迭代法來求其平衡解路徑上的實分歧點和Hopf分歧點﹐再使用隱函數定理﹑Liapunov-Schmidt降階法﹑切線猜測法﹑割線猜測法和虛擬弧長延拓法﹐來找出過實分歧點和Hopf分歧點的平衡解解分支路徑﹒最後﹐我們將改變其中的參數﹐求得平衡解路徑上的實分歧點和Hopf分歧點與其分歧圖﹒
The thesis investigates real bifurcation points, Hopf bifurcation points and solution branches of steady-state solution paths of a non-adiabatic tubular reactor model.
We use Hopf bifurcation theorem, shooting method, Rung-Kutta integral formula and Newton’s interative method to calculate real bifurcation points and Hopf bifurcation points. We use implicit function theorem, Liapunov-Schmidt reduction method, tangent-predictor method, secant-predictor method and pseudo-arclength continuation method to figure out all solution branches of steady-state solution paths bifurcating from real bifurcation points and Hopf bifurcation points. Finally, we change the parameters to find real bifurcation points, Hopf bifurcation points and bifurcation diagram of the model.
參考文獻
[1] Allgower , E.L. and Chien, C.S., Continuation and local perturbation
for multiple bifurcation, SIAM J. SCI. STAT. Comput., 7,
pp.1265-1281, 1986.
[2] A. I. Fedoseyev, M. J. Friedman, and E. J. Kansa, Continuation for
nonlinear elliptic partial differential equations discretized by the
multiquadric method, International Journal of Bifurcation and Chaos,
10 , pp. 481—492﹐2000﹒
[3] Aselone, P. M. and Moore, R. H., An Extension of the
Newton-Kantorovich Method for Sloving Nonlinear Equations with
An Application to Elasticity. J. Math. Anal., 13, pp. 476-501, 1966.
[4] Crandall, M.G., An Introduction to Constructive Aspects of Bifurcation and The Implicit Function Theorem, Application of
Bifurcation Theorem, edited by P.H. Rabinowtiz, Academic Press,
New York, 1977.
[5] Crandall, M.G., and Rabinowitz, P.H., Bifurcation from simple
eigenvalue, J. Funct. Anal., 8, pp.321-340, 1971.
[6] Crandall, M.G. and Rabinowliz, P. H., Mathematical Theory of
Bifurcation, Bifurcation Phenomena in Mathematical Physics and
Related Topics, edit by Bardos, C. and Bessis, D., NATO Advanced
Study Institute Series, 1979.
[7] C.-S. Chien and S.-L. Chang, Application of the Lanczos algorithm
for solving the linear systems that occur in continuation problems,
Numer. Linear Algebra Appl., pp.335-355﹐2003﹒
[8] C.-S. Chien and Y.-S. Liao, Multiple bifurcations generated by mode
interactions in a reaction-diffusion problem, Journal of Computational
and Applied Mathematics, 130 , pp. 345—368﹐2001﹒
[9] D. Roose, An algorithm for the computation of Hopf bifurcation
points in comparison with other methods, J. Comp. and Appl. Math.,
12&13, pp.517-529, 1985.
[10] Eusebius Doedel Laurette S. Tuckerman, Numerical Methods for
Bifurcation Problems and Large-Scale Dynamical Systems, 1999.
[11] Holodniok, M. and Kubicek, M., DERPER-An algorithm for
continuation of periodic solution in Ordinary Differential Equations, J. Comp. Phys. Vol.55,254-267, 1984.
[12] H. D. Schepper, Finite element methods for eigenvalue problems on
a rectangle with (semi-)periodic boundary conditions on a pair of
adjacent sides, Computing, 64 , pp. 191—206﹐2000﹒
[13] Ioose, G. and Joseph, D.D., Elementary Stability and Bifurcation
Theory, Spring-Verleg, 1989.
[14] Jepson, A.D. and Spence, A., Numerical Methods for Bifurcation
Problems, State of the Art in Numerical Analysis, edit bu A. Iserles,
MJD Powe11, 1987.
[15] K.F. Jensen and W. Harmon Ray, The bifurcation behavior of tubular
reactors, Chem. Engng. Sci., 37, pp.199-222, 1982.
[16] Keller, H.B. and Langford, W.F., Iterations, perturbations and
multiplicities for nonlinear bifurcation problems, Arch. Rational
Mech. Anal., 48, pp83-108, 1972.
[17] Keller, H.B., in “Recent Advances in Numerical Analysis”, Ed. By
C. de Boor and G.H. Golub, Academic Press, New York, p.73, 1978.
[18] Keller, H.B., Lectures on Numerical Methods in Bifurcation
Problems, TATA Institute of Fundamental Research,Springer-Verlag,
1987.
[19] Kubicek, M. and Marek, M., Computational Merhods in Bifurcation
Theory and Dissipative Structures, Springer-Verlag, New York,1983.
[20] M. Holodniok, M. Kubicek, and M. Marek, Stable and unstable
periodic solutions in the Lorenz model, preprints of the Math. Inst.,
Technical University Munchen, G.F.R., 1982.
[21] M. Kubicek and M. Marek, Evaluation of limit and bifurcation for
algebraic and nonlinear boundary value problems, Appl. Math.
Comput, 1979.
[22] R.F. Heinemann and A.B. Poore, Multiplicity, stability and
oscillatory dynamics of the tubular reactor, Chem. Engng. Sci., 36,
pp.1411-1419, 1981.
[23] Rheinboldt, W.C., Numerical Analysis of Parameterized Nonlinear
Equations, Wiley (New York).
[24] Rheinboldt, W.C., Solution Fields of Nonlinear Equations and
Continuation Methods, SIAM J. Numer. Anal., 17, pp.221-237,
1980.
[25] S.-L. Chang and C.-S. Chien, A multigrid-Lanczos algorithm for the
numerical solutions of nonlinear eigenvalue problems, International
Journal of Bifurcation and Chaos, 13 , pp. 1217—1228﹐2003﹒
[26] Wacker, H.(ed-), Continuation Methods, Academic Press, New York,
1978.