簡易檢索 / 詳目顯示

研究生: 莊景勝
Juang Jing Sheng
論文名稱: ㄧ個非絕熱管狀反應器模型平衡解路徑上的實分歧與Hopf分歧問題探討
Numerical Investigation for Real Bifurcation and Hopf Bifurcation Problems of Steady-State Solution Paths of A Non-adiabatic Tubular Reactor Model
指導教授: 簡國清
Jen Kuo Ching
口試委員:
學位類別: 碩士
Master
系所名稱: 南大校區系所調整院務中心 - 應用數學系所
應用數學系所(English)
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 131
中文關鍵詞: 實分歧點Hopf分歧點打靶法Rung-Kutta積分公式牛頓迭代法隱函數定理Liapunov-Schmidt降階法切線猜測法割線猜測法虛擬弧長延拓法解分支分歧圖
外文關鍵詞: Real bifurcation points, Hopf bifurcation points, Shooting method, Rung-Kutta integral formula, Newton's interative method, Implicit function theorem, Liapunov-Schmidt reduction method, Tangent-predictor method, Secant-predictor method, Pseudo-arclength continuation method, Solution branch, Bifurcation diagram
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要在探討一個非絕熱管狀反應器模型之平衡解路徑上的實分歧點和Hopf分歧點與其分歧解路徑﹒
    我們將利用Hopf分歧定理﹑打靶法﹑Rung-Kutta積分公式和牛頓迭代法來求其平衡解路徑上的實分歧點和Hopf分歧點﹐再使用隱函數定理﹑Liapunov-Schmidt降階法﹑切線猜測法﹑割線猜測法和虛擬弧長延拓法﹐來找出過實分歧點和Hopf分歧點的平衡解解分支路徑﹒最後﹐我們將改變其中的參數﹐求得平衡解路徑上的實分歧點和Hopf分歧點與其分歧圖﹒


    The thesis investigates real bifurcation points, Hopf bifurcation points and solution branches of steady-state solution paths of a non-adiabatic tubular reactor model.
    We use Hopf bifurcation theorem, shooting method, Rung-Kutta integral formula and Newton’s interative method to calculate real bifurcation points and Hopf bifurcation points. We use implicit function theorem, Liapunov-Schmidt reduction method, tangent-predictor method, secant-predictor method and pseudo-arclength continuation method to figure out all solution branches of steady-state solution paths bifurcating from real bifurcation points and Hopf bifurcation points. Finally, we change the parameters to find real bifurcation points, Hopf bifurcation points and bifurcation diagram of the model.

    目 錄 第一章 緒論------------------------------------------------1 第二章 基本理論---------------------------------------------3 2.1 分歧理論------------------------------------------------3 2.2 隱函數定理----------------------------------------------7 2.3 局部延拓法----------------------------------------------9 2.4 虛擬弧長延拓法-----------------------------------------12 第三章 非線性模型平衡解路徑上之分歧點及其解分支----------------15 3.1 平衡解之求法-------------------------------------------16 3.2 Hopf分歧點-------------------------------------------19 3.3 過分歧點之平衡解分支及其延拓方向--------------------------30 3.4 解分支之延拓-------------------------------------------37 3.5 演算法------------------------------------------------40 第四章 數值實驗--------------------------------------------47 4.1 實驗(一)----------------------------------------------49 4.2 實驗(二)----------------------------------------------74 第五章 結論與檢討-----------------------------------------125 參考文獻--------------------------------------------------128

    參考文獻
    [1] Allgower , E.L. and Chien, C.S., Continuation and local perturbation
    for multiple bifurcation, SIAM J. SCI. STAT. Comput., 7,
    pp.1265-1281, 1986.
    [2] A. I. Fedoseyev, M. J. Friedman, and E. J. Kansa, Continuation for
    nonlinear elliptic partial differential equations discretized by the
    multiquadric method, International Journal of Bifurcation and Chaos,
    10 , pp. 481—492﹐2000﹒
    [3] Aselone, P. M. and Moore, R. H., An Extension of the
    Newton-Kantorovich Method for Sloving Nonlinear Equations with
    An Application to Elasticity. J. Math. Anal., 13, pp. 476-501, 1966.
    [4] Crandall, M.G., An Introduction to Constructive Aspects of Bifurcation and The Implicit Function Theorem, Application of
    Bifurcation Theorem, edited by P.H. Rabinowtiz, Academic Press,
    New York, 1977.
    [5] Crandall, M.G., and Rabinowitz, P.H., Bifurcation from simple
    eigenvalue, J. Funct. Anal., 8, pp.321-340, 1971.
    [6] Crandall, M.G. and Rabinowliz, P. H., Mathematical Theory of
    Bifurcation, Bifurcation Phenomena in Mathematical Physics and
    Related Topics, edit by Bardos, C. and Bessis, D., NATO Advanced
    Study Institute Series, 1979.
    [7] C.-S. Chien and S.-L. Chang, Application of the Lanczos algorithm
    for solving the linear systems that occur in continuation problems,
    Numer. Linear Algebra Appl., pp.335-355﹐2003﹒
    [8] C.-S. Chien and Y.-S. Liao, Multiple bifurcations generated by mode
    interactions in a reaction-diffusion problem, Journal of Computational
    and Applied Mathematics, 130 , pp. 345—368﹐2001﹒
    [9] D. Roose, An algorithm for the computation of Hopf bifurcation
    points in comparison with other methods, J. Comp. and Appl. Math.,
    12&13, pp.517-529, 1985.
    [10] Eusebius Doedel Laurette S. Tuckerman, Numerical Methods for
    Bifurcation Problems and Large-Scale Dynamical Systems, 1999.
    [11] Holodniok, M. and Kubicek, M., DERPER-An algorithm for
    continuation of periodic solution in Ordinary Differential Equations, J. Comp. Phys. Vol.55,254-267, 1984.
    [12] H. D. Schepper, Finite element methods for eigenvalue problems on
    a rectangle with (semi-)periodic boundary conditions on a pair of
    adjacent sides, Computing, 64 , pp. 191—206﹐2000﹒
    [13] Ioose, G. and Joseph, D.D., Elementary Stability and Bifurcation
    Theory, Spring-Verleg, 1989.
    [14] Jepson, A.D. and Spence, A., Numerical Methods for Bifurcation
    Problems, State of the Art in Numerical Analysis, edit bu A. Iserles,
    MJD Powe11, 1987.
    [15] K.F. Jensen and W. Harmon Ray, The bifurcation behavior of tubular
    reactors, Chem. Engng. Sci., 37, pp.199-222, 1982.
    [16] Keller, H.B. and Langford, W.F., Iterations, perturbations and
    multiplicities for nonlinear bifurcation problems, Arch. Rational
    Mech. Anal., 48, pp83-108, 1972.
    [17] Keller, H.B., in “Recent Advances in Numerical Analysis”, Ed. By
    C. de Boor and G.H. Golub, Academic Press, New York, p.73, 1978.
    [18] Keller, H.B., Lectures on Numerical Methods in Bifurcation
    Problems, TATA Institute of Fundamental Research,Springer-Verlag,
    1987.
    [19] Kubicek, M. and Marek, M., Computational Merhods in Bifurcation
    Theory and Dissipative Structures, Springer-Verlag, New York,1983.
    [20] M. Holodniok, M. Kubicek, and M. Marek, Stable and unstable
    periodic solutions in the Lorenz model, preprints of the Math. Inst.,
    Technical University Munchen, G.F.R., 1982.
    [21] M. Kubicek and M. Marek, Evaluation of limit and bifurcation for
    algebraic and nonlinear boundary value problems, Appl. Math.
    Comput, 1979.
    [22] R.F. Heinemann and A.B. Poore, Multiplicity, stability and
    oscillatory dynamics of the tubular reactor, Chem. Engng. Sci., 36,
    pp.1411-1419, 1981.
    [23] Rheinboldt, W.C., Numerical Analysis of Parameterized Nonlinear
    Equations, Wiley (New York).
    [24] Rheinboldt, W.C., Solution Fields of Nonlinear Equations and
    Continuation Methods, SIAM J. Numer. Anal., 17, pp.221-237,
    1980.
    [25] S.-L. Chang and C.-S. Chien, A multigrid-Lanczos algorithm for the
    numerical solutions of nonlinear eigenvalue problems, International
    Journal of Bifurcation and Chaos, 13 , pp. 1217—1228﹐2003﹒
    [26] Wacker, H.(ed-), Continuation Methods, Academic Press, New York,
    1978.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE